首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe3+ Ions have been immobilized into very thin Nafion films cast onto a glass‐fiber mat immersed in an alcoholic solution of Nafion oligomers. This immobilized Fenton catalyst was used to abate/mineralize the azo dye Orange II, taken as a model organic compound. The abatement of Orange II on the Fe3+/Nafion/glass fibers was observed to proceed within the same time period as when Nafion alone was used to immobilize the Fe3+ ions during the photo‐Fenton reaction. The amount of Nafion in the Nafion Fe3+/Nafion/glass fibers was ca. 15 times less per unit surface area compared to Fe3+‐exchanged on conventional Nafion membranes used to immobilize Fe3+ ions. Orange II solutions under visible‐light irradiation in the presence of H2O2 were mineralized up to pH 8 with a kinetics comparable to that found during the degradation runs at pH 3. Repetitive mineralization cycles mediated by the Fe3+/Nafion/glass fibers under visible light did not show any decrease in the activity of the immobilized catalysts. A reaction mechanism consistent with the experimental data is suggested. The morphology of the Fe3+/Nafion/glass fibers was characterized by scanning electron microscopy (SEM) showing thin Nafion films cast deposited on the glass fibers. Transmission‐electron‐microscopy (TEM) micrographs reveal Fe3+‐oxy‐hydroxide particles of 3 – 6 nm before and after repetitive Orange II photodegradation. X‐Ray photoelectron spectroscopy (XPS) provided the evidence for the existence of Fe clusters on the topmost layer of the catalyst mainly as FeIII. The improvements brought by the glass fibers are a) the use of low quantities of expensive Nafion supported on glass mats to achieve dye degradation rates comparable to Nafion alone and b) Fenton‐mediated degradation of azo dyes at pH 8 without the costly initial acidification usually needed for this type of treatment.  相似文献   

2.
On‐surface degradation of sildenafil (an adequate substrate as it contains assorted functional groups in its structure) promoted by the Fenton (Fe2+/H2O2) and Fenton‐like (Mn+/H2O2; Mn+ = Fe3+, Co2+, Cu2+, Mn2+) systems was investigated by using paper spray ionization mass spectrometry (PS‐MS). The performance of each system was compared by measuring the ratio between the relative intensities of the ions of m/z 475 (protonated sildenafil) and m/z 235 (protonated lidocaine, used as a convenient internal standard and added to the paper just before the PS‐MS analyzes). The results indicated the following order in the rates of such reactions: Fe2+/H2O2 ≫ H2O2 ≫ Cu2+/H2O2 > Mn+/H2O2 (Mn+ = Fe3+, Co2+, Mn2+) ~ Mn+ (Mn+ = Fe2+, Fe3+, Co2+, Cu2+, Mn2). The superior capability of Fe2+/H2O2 in causing the degradation of sildenafil indicates that Fe2+ efficiently decomposes H2O2 to yield hydroxyl radicals, quite reactive species that cause the substrate oxidation. The results also indicate that H2O2 can spontaneously decompose likely to yield hydroxyl radicals, although in a much smaller extension than the Fenton system. This effect, however, is strongly inhibited by the presence of the other cations, ie, Fe3+, Co2+, Cu2+, and Mn2+. A unique oxidation by‐product was detected in the reaction between Fe2+/H2O2 with sildenafil, and a possible structure for it was proposed based on the MS/MS data. The on‐surface reaction of other substrates (trimethoprim and tamoxifen) with the Fenton system was also investigated. In conclusion, PS‐MS shows to be a convenient platform to promptly monitor on‐surface oxidation reactions.  相似文献   

3.
Development of novel nanocatalysts for the highly efficient in situ synthesis of H2O2 from H2 and O2 in the electro‐Fenton (EF) process has potential for the remediation of water pollution. In this work, AuPd/carbon nanotube (CNT) nanocatalysts were successfully synthesized by the facile aggregation of AuPd bimetals on CNTs. Characterization by X‐ray diffraction, transmission electron microscopy, and X‐ray photoelectron spectroscopy indicated that pure AuPd bimetallic heterogeneous nanospheres (≈20 nm) were well dispersed outside the CNTs, which resulted in better catalytic performance than Pd/CNTs alone: 0.36 M H2O2 was synthesized; 0.05 M Fe2+ optimally initiated the EF process due to the superior in situ Fe2+ regeneration; and the organic pollutant removal reached 100 % at 37 min, with a pseudo‐first‐order kinetic constant k1=0.051 min?1. Moreover, structural insights before/after catalysis revealed that Au strengthened the construction of the nanocrystals, avoided negative deactivation caused by AuPd agglomeration, and immobilized the active Pd(111). The catalytic stability of AuPd/CNTs over ten cycles implied long durability and promising applications of this material.  相似文献   

4.
The proherbicide Isoxaflutole (IXF) hydrolyzes spontaneously to diketonitrile (DKN) a phytotoxic compound with herbicidal activity. In this work, the sensitized degradation of IXF using Riboflavin (Rf), a typical environmentally friendly sensitizer, Fenton and photo‐Fenton processes has been studied. The results indicate that only the photo‐Fenton process produces a significant degradation of the IXF. Photolysis experiments of IXF sensitized by Riboflavin is not a meaningful process, IXF quenches the Rf excited triplet (3Rf*) state with a quenching rate constant of 1.5 · 107 m ?1 s?1 and no reaction is observed with the species O2(1Δg) or O 2 · ? generated from 3Rf*. The Fenton reaction produces no changes in the IXF concentration. While the photo‐Fenton process of the IXF, under typical conditions, it produces a degradation of 99% and a mineralization to CO2 and H2O of 88%. A rate constant value of 1.0 × 109 m ?1 s?1 was determined for the reaction between IXF and HO˙. The photo‐Fenton process degradation products were identified by UHPLC‐MS/MS analysis.  相似文献   

5.
The kinetics of the Fenton reaction was studied in detail. A second reaction step in the presence of excess H2O2 is attributed to formation of the complex FeIII(?O2H)aq. Therefore, the reaction of Fe(H2O)62+ with FeIII(?O2H)aq in the presence of FeII to form FeIIIaq (k=(7.7±1.5)×105 M ?1 s?1) may contribute to the overall Fenton reaction, and could account for some of the debate in the literature concerning its detailed mechanism. If this is correct for LFeIII(?O2H)aq also, then it might be of significant biological importance. The activation parameters ΔH, ΔS, and ΔV for the Fenton reaction were measured under various experimental conditions, and are used in the mechanistic interpretation.  相似文献   

6.
龚静鸣  林祥钦 《中国化学》2003,21(7):761-766
Fe3O4 particles coated with acrylic copolymer (ACP) of about 5--8 nm in diameter were synthesized and used for immobilization of horseradish peroxidase (HRP). Direct electrochemistry of HRP embedded in the nanosized Fe304 solid matrix modified paraffin impregnated graphite electrode (PIGE) was achieved,which is related to the heine Fe(Ⅲ)/Fe(Ⅱ) conversion of HRP. Cyclic voltammetry gave a pair of reproducible and welldefined redox peaks at about Ea of -0.295 V vs. SCE. The standard rate constant k, was determined as 2.7 s^-1. It demonstrated that the nano-Fe3O4 solid matrix offers a friendly platform to assemble the HRP protein molecules and enhance the electron transfer rate between the HRP and the electrode. UV-Vis absorption spectra and WrIR spectra studies revealed that the embedded HRP retained its native-like structure. The HRP/Fe3O4/PIGE showed a strong catalytic activity toward H2O2. The voltammetric response was a linear function of H2O2 concentration in the range of 10-140μmol/L with detection limit of 7.3 μmol/L (s/n = 3 ). The apparent Michaelis-Menten constant is calculated to be 0.42 mmol/L.  相似文献   

7.
Excessive consumption of Fe (II) and massive generation of sludge containing Fe (III) from classic Fenton process remains a major obstacle for its poor recycling of Fe (III) to Fe (II). Therefore, the MHACF‐MIL‐101(Cr) system, by introducing H2, Pd0 and MIL‐101(Cr) into Fenton reaction system, was developed at normal temperature and pressure. In this system, the reduction of FeIII back to FeII by solid catalyst Pd/MIL‐101(Cr) for the storage and activation of H2, was accelerated significantly by above 10‐fold and 5‐fold controlled with the H2‐MIL‐101(Cr) system and H2‐Pd0 system, respectively. However, the concentration of Fe (II) generated by the reduction of Fe (III) could not be detected with the only input of H2 and without the addition of MOFs material. In addition, the apparent consumption of Fe (II) in MHACF‐MIL‐101(Cr) system was half of that in classical Fenton system, while more Fe (II) might be reused infinitely in fact. Accordingly, only trace amount of Fe (II) vs H2O2 concentration was needed and hydroxyl radicals through the detection of para‐hydroxybenzoic acid (p‐HBA) as the oxidative product of benzoic acid (BA) by·OH could be continuously generated for the effective degradation of 4‐chlorophenol(4‐CP). The effects of initial pH, concentration of 4‐CP, dosage of Fe2+, H2O2 and Pd/MIL‐101(Cr) catalyst, Pd content and H2 flow were investigated, combined with systematic controlled experiments. Moreover, the robustness and morphology change of Pd/MIL‐101(Cr) were thoroughly analyzed. This study enables better understanding of the H2‐mediated Fenton reaction enhanced by Pd/MIL‐101(Cr) and thus, will shed new light on how to accelerate Fe (III)/Fe (II) redox cycle and develop more efficient Fenton system.  相似文献   

8.
Anthraquinone (AQ) redox mediators are introduced to metal‐free organic dye sensitized photo‐electrochemical cells (DSPECs) for the generation of H2O2. Instead of directly reducing O2 to produce H2O2, visible‐light‐driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water‐soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm?2 and near‐quantitative faradaic efficiency for producing H2O2. In a non‐aqueous electrolyte, under 1 sun illumination, an organic‐soluble AQ is applied and the photocurrent reaches 1.8 mA cm?2 with faradaic efficiency up to 95 % for H2O2 production. This AQ‐relay DSPEC exhibits the highest photocurrent so far in non‐aqueous electrolytes for H2O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible‐light‐driven H2O2 production.  相似文献   

9.
Photocatalysis provides a cost effective method for both renewable energy synthesis and environmental purification. Photocatalytic activity is dominated by the material design strategy and synthesis methods. Here, for the first time, we report very mild and effective photo‐deposition procedures for the synthesis of novel Fe2O3–TiO2 nanocomposites. Their photocatalytic activities have been found to be dramatically enhanced for both contaminant decomposition and photoelectrochemical water splitting. When used to decompose a model contaminant herbicide, 2,4‐dichlorophenoxyacetic acid (2,4‐D), monitored by both UV/Vis and total organic carbon (TOC) analysis, 10 % Fe–TiO2–H2O displayed a remarkable enhancement of more than 200 % in the kinetics of complete mineralisation in comparison to the commercial material P25 TiO2 photocatalyst. Furthermore, the photocurrent is nearly double that of P25. The mechanism for this improvement in activity was determined using density functional theory (DFT) and photoluminescence. These approaches ultimately reveal that the photoelectron transfer is from TiO2 to Fe2O3. This favours O2 reduction which is the rate‐determining step in photocatalytic environmental purification. This in situ charge separation also allows for facile migration of holes from the valence band of TiO2 to the surface for the expected oxidation reactions, leading to higher photocurrent and better photocatalytic activity.  相似文献   

10.
In this study, the effect of photo-Fenton process on the treatment of petrochemical waste water treatment was investigated. The influence of process conditions were determined by factorial design. Optimization of the process conditions were performed by central composite design. Under, optimized conditions lab scale and solar assisted pilot scale of petrochemical waste water treatment was performed. Three factors namely initial pH, H2O2 concentration (mM) and Fe2+ concentration (mM) executed the essential role in petrochemical waste water treatment. Central composite design resulted in the prediction of optimized value as 6.5 initial pH, 15.65 mM of H2O2 concentration and 2.09 mM of Fe2+ concentration. Under these conditions, the reduction in chemical oxygen demand (COD) percentage reached about 68.67 ± 2.8% after 280 min in pilot scale of solar assisted photo Fenton process of petrochemical waste water treatment. Thus, experimental design combined with advanced Fenton process can become a feasible unconventional method for petrochemical waste water treatment.  相似文献   

11.
We report here the electrocatalytic reduction of oxygen on thin anthraquindisulfonate (AQDS)/poplypyrrole (PPy) composite film modified electrodes and its application to the electrooxidation of azo dye‐amaranth. The polymer‐coated cathode exhibited good electrocatalytic activity towards oxygen reduction reaction (ORR), and allowed the formation of strong oxidant hydroxyl radical (.OH) in the medium via Electro‐Fenton's reaction between cathodically generated H2O2 and added or regenerated Fe2+. The electrochemical behaviors of ORR in various pH solutions were described using cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometric (CA) techniques. The effect of solution pH on amaranth mineralization by the Fe2+/H2O2 and Fe3+/H2O2 electrooxidation systems was studied. In addition, the long‐term electrocatalytic activity and stability of the AQDS/PPy composite film during multiple experimental runs were also examined electrochemically.  相似文献   

12.
An efficient protocol for the one‐pot reaction of isatoic anhydride (=1,2‐dihydro‐4H‐3,1‐benzoxazine‐2,4‐dione), primary alkylamines, and heterocumulenes (isothiocyanates and isocyanates) in H2O catalyzed by magnetically recoverable Fe3O4 nanoparticles is described.  相似文献   

13.
Generation of hydroxyl radicals in the Fenton system (FeII/H2O2) is seriously limited by the sluggish kinetics of FeIII reduction and fast FeIII precipitation. Here, boron crystals (C‐Boron) remarkably accelerate the FeIII/FeII circulation in Fenton‐like systems (C‐Boron/FeIII/H2O2) to produce a myriad of hydroxyl radicals with excellent efficiencies in oxidative degradation of various pollutants. The surface B?B bonds and interfacial suboxide boron in the surface B12 icosahedra are the active sites to donate electrons to promote fast FeIII reduction to FeII and further enhance hydroxyl radical production via Fenton chemistry. The C‐Boron/FeIII/H2O2 system outperforms the benchmark Fenton (FeII/H2O2) and FeIII‐based sulfate radical systems. The reactivity and stability of crystalline boron is much higher than the popular molecular reducing agents, nanocarbons, and other metal/metal‐free nanomaterials.  相似文献   

14.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

15.
Samples of natural groundwater (with low turbidity, neutral pH and 0.3 mg L?1 iron concentration) inoculated with Escherichia coli K‐12 were exposed to simulated solar light both in the presence and in the absence 10 mg L?1 of H2O2. Results demonstrated that the viability of E. coli (by DVC–FISH) was grounded to zero after 360 min of irradiation. This abatement could be caused by the oxidative stress induced by radicals or another photo‐induced reactive oxygen species. Two 23 factorial experimental designs enabled the evaluation of the effects of chemical factors on the inactivation of E. coli. The first experimental design considered the pH, iron and H2O2, while the second evaluated the ions fluoride, carbonate and phosphate found in groundwater. pH was found to play a key role in the inactivation of E. coli. The best reduction in viability was obtained at the lower pH (6.75), while a nonsignificant effect was observed when iron or H2O2 concentrations were raised. At higher concentrations, anions, such as carbonate and phosphate, negatively affected the E. coli abatement. However, a higher concentration of fluoride accelerated it. In all experiments, the pH was observed to rise to values higher than 8.0 units after 360 min of treatment.  相似文献   

16.
The understanding of intermolecular interactions is a key objective of crystal engineering in order to exploit the derived knowledge for the rational design of new molecular solids with tailored physical and chemical properties. The tools and theories of crystal engineering are indispensable for the rational design of (pharmaceutical) cocrystals. The results of cocrystallization experiments of the antithyroid drug 6‐propyl‐2‐thiouracil (PTU) with 2,4‐diaminopyrimidine (DAPY), and of 6‐methoxymethyl‐2‐thiouracil (MOMTU) with DAPY and 2,4,6‐triaminopyrimidine (TAPY), respectively, are reported. PTU and MOMTU show a high structural similarity and differ only in the replacement of a methylene group (–CH2–) with an O atom in the side chain, thus introducing an additional hydrogen‐bond acceptor in MOMTU. Both molecules contain an ADA hydrogen‐bonding site (A = acceptor and D = donor), while the coformers DAPY and TAPY both show complementary DAD sites and therefore should be capable of forming a mixed ADA/DAD synthon with each other, i.e. N—H…O, N—H…N and N—H…S hydrogen bonds. The experiments yielded one solvated cocrystal salt of PTU with DAPY, four different solvates of MOMTU, one ionic cocrystal of MOMTU with DAPY and one cocrystal salt of MOMTU with TAPY, namely 2,4‐diaminopyrimidinium 6‐propyl‐2‐thiouracilate–2,4‐diaminopyrimidine–N,N‐dimethylacetamide–water (1/1/1/1) (the systematic name for 6‐propyl‐2‐thiouracilate is 6‐oxo‐4‐propyl‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C7H9N2OS·C4H6N4·C4H9NO·H2O, (I), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylformamide (1/1), C6H8N2O2S·C3H7NO, (II), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylacetamide (1/1), C6H8N2O2S·C4H9NO, (III), 6‐methoxymethyl‐2‐thiouracil–dimethyl sulfoxide (1/1), C6H8N2O2S·C2H6OS, (IV), 6‐methoxymethyl‐2‐thiouracil–1‐methylpyrrolidin‐2‐one (1/1), C6H8N2O2S·C5H9NO, (V), 2,4‐diaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate (the systematic name for 6‐methoxymethyl‐2‐thiouracilate is 4‐methoxymethyl‐6‐oxo‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C6H7N2O2S, (VI), and 2,4,6‐triaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate–6‐methoxymethyl‐2‐thiouracil (1/1), C4H8N5+·C6H7N2O2S·C6H8N2O2S, (VII). Whereas in (I) only an AA/DD hydrogen‐bonding interaction was formed, the structures of (VI) and (VII) both display the desired ADA/DAD synthon. Conformational studies on the side chains of PTU and MOMTU also revealed a significant deviation for cocrystals (VI) and (VII), leading to the desired enhancement of the hydrogen‐bond pattern within the crystal.  相似文献   

17.
《Comptes Rendus Chimie》2015,18(10):1152-1160
In this study, the optimization and implementation of a homogeneous photo-Fenton process for the decolorization and mineralization of a wastewater containing highly concentrated yellow 5 (E102) dye, resulting from an industry placed in the suburbs of Medellin (Colombia), is presented. Response surface methodology was applied as a tool for the optimization of operational conditions such as initial dyestuff concentration, H2O2 concentration, and UV-radiation power (number of lamps). The decolorization, degradation and mineralization efficiencies were used as response variables. The following conditions were found to be optimal for decolorization and mineralization of yellow 5: UV radiation of 365 nm (4 W, one lamp), dye concentration of 200 mg/L, Fe2+ concentration of 1.0 mM, H2O2 concentration of 1.75 mL/L, treatment time of 180 min, Fe2+ concentration of 1 mM and pH = 3. Under these conditions (180 min), the photo-Fenton process allowed us to reach ca. 100% of color dye degradation, 99% of COD degradation, and 85% of mineralization (TOC). The scavenging effect of the Cl anion on the photodegradation process was also confirmed.  相似文献   

18.
The sulfide photocatalyst of Zn0.9Fe0.1S was successfully synthesized by a facile microwave‐assisted method, and Zn0.9Fe0.1S photocatalysts were characterized using SEM, EDX, XRD and BET. The specific surface area of synthesized Zn0.9Fe0.1S is 78.1 m2 g?1, and total pore volume is 0.4 cm3 g?1. With bisphenol A (BPA) as a target pollutant, photocatalytic system of UV + Zn0.9Fe0.1S + H2O2 was set up. Some influencing parameters, including H2O2 dosage, initial pH value, initial concentration of BPA and Zn0.9Fe0.1S dosage, were investigated, and the stability of the Zn0.9Fe0.1S was also studied during the photocatalysis. The optimum values of operating parameters were found at an initial pH value of 5.0, a H2O2 dosage of 0.15 mmol L?1 and a Zn0.9Fe0.1S dosage of 0.08 g when the initial concentration of BPA was 10 mg L?1. Under the optimal conditions, the highest removal rate of BPA achieved 95%. After seven consecutive reaction cycles, the degradation efficiency of BPA could still reach 85% and there was only a little dissolution of Zn2+ and Fe2+. Compared with the traditional photo‐Fenton system, the UV + Zn0.9Fe0.1S + H2O2 system can not only improve the degradation efficiency of BPA, but also reduce the dosage of H2O2 and thus reduce the processing cost.  相似文献   

19.
Redox cycling of iron is a critical aspect of iron toxicity. Reduction of a low‐molecular‐weight iron(III)‐complex followed by oxidation of the iron(II)‐complex by hydrogen peroxide may yield the reactive hydroxyl radical (OH.) or an oxoiron(IV) species (the Fenton reaction). Complexation of iron by a ligand that shifts the electrode potential of the complex to either to far below ?350 mV (dioxygen/superoxide, pH=7) or to far above +320 mV (H2O2/HO., H2O pH=7) is essential for limitting Fenton reactivity. The oral chelating agents CP20, CP502, CP509, and ICL670 effectively remove iron from patients suffering from iron overload. We measured the electrode potentials of the iron(III) complexes of these drugs by cyclic voltammetry with a mercury electrode and determined the dependence on concentration, pH, and stoichiometry. The standard electrode potentials measured are ?620 mV, ?600 mV, ?535 mV, and ?535 mV with iron bound to CP20, ICL670, CP502, and CP509, respectively, but, at lower chelator concentrations, electrode potentials are significantly higher.  相似文献   

20.
Reliable methods for enantioselective cis‐dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis‐α‐[FeII(2‐Me2‐BQPN)(OTf)2], which bears a tetradentate N4 ligand (Me2‐BQPN=(R,R)‐N,N′‐dimethyl‐N,N′‐bis(2‐methylquinolin‐8‐yl)‐1,2‐diphenylethane‐1,2‐diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron‐deficient alkenes were efficiently oxidized to chiral cis‐diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2O2) as oxidant under mild conditions. Experimental studies (including 18O‐labeling, ESI‐MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis‐FeV(O)2 reaction intermediate as an active oxidant. This cis‐[FeII(chiral N4 ligand)]2+/H2O2 method could be a viable green alternative/complement to the existing OsO4‐based methods for asymmetric alkene dihydroxylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号