首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nanozymes with intrinsic enzyme‐like properties have attracted significant interest owing to their capability to address the limitations of traditional enzymes such as fragility, high cost and difficult mass production. However, the currently reported nanozymes are generally less active than natural enzymes. In recent years, with the rapid development of nanoscience and nanotechnology, single‐atom nanozymes (SAzymes) with well‐defined electronic and geometric structures have shown a promise to serve as direct surrogates of traditional enzymes by mimicking the highly evolved catalytic center of natural enzymes. In this review, we will introduce the enzymatic characteristics and recent advances of SAzymes, and summarize their significant applications from in vitro detection to in vivo monitoring and therapy.  相似文献   

2.
Enzyme mimics, especially nanozymes, play a crucial role in replacing natural enzymes for diverse applications related to bioanalysis, therapeutics and other enzyme-like catalysis. Nanozymes are catalytic nanomaterials with enzyme-like properties, which currently face formidable challenges with respect to their intricate structure, properties and mechanism in comparison with enzymes. The latest emergence of single-atom nanozymes (SAzymes) undoubtedly promoted the nanozyme technologies to the atomic level and provided new opportunities to break through their inherent limitations. In this perspective, we discuss key aspects of SAzymes, including the advantages of the single-site structure, and the derived synergetic enhancements of enzyme-like activity, catalytic selectivity and the mechanism, as well as the superiority in biological and catalytic applications, and then highlight challenges that SAzymes face and provide relevant guidelines from our point of view for the rational design and extensive applications of SAzymes, so that SAzyme may achieve its full potential as the next-generation nanozyme.

Single-atom nanozymes with definite active centers, high catalytic activities and enzyme-like selectivities promote the nanozyme research entering a new period of atomic level.  相似文献   

3.
Single-atom nanozymes (SAzymes) are promising in next-generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi-enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi-enzymatic performances. The constructed MnSA−N3-coordinated SAzymes (MnSA−N3−C) exhibits much more remarkable oxidase-, peroxidase-, and glutathione oxidase-like activities than that of MnSA−N4−C. Based on experimental and theoretical results, these multi-enzyme-like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA−N3−C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic-level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.  相似文献   

4.
Nature has evolved enzymes with exquisite active sites that catalyze biotransformations with high efficiency. However, the exploitation of natural enzymes is often hampered by poor stability, and natural enzyme production and purification are costly. Supramolecular self-assembly allows the construction of biomimetic active sites, although it is challenging to produce such artificial enzymes with catalytic activity and stability that rival those of natural enzymes. We report herein a strategy to produce a horseradish peroxidase (HRP) mimic based on the assembly of chitosan with a G-quadruplex DNA (G-DNA)/hemin complex. A network-like morphology of the assembled nanomaterial was observed together with a remarkable enhancement of peroxidase activity induced by the chitosan and G-DNA components. The turnover frequency and catalytic efficiency of the enzyme-mimicking material reached or even surpassed those of HRP. Moreover, the catalytic complex exhibited higher tolerance than HRP to harsh environments, such as extremely low pH or high temperatures. In accord with the experimental and simulated results, it is concluded that the spatial distribution of the G-DNA and chitosan components and the exposure of the catalytic center may facilitate the coordination of substrates by the hemin iron, leading to the superior activity of the material. Our work provides a simple and affordable avenue to produce highly active and robust enzyme-mimicking catalytic nanomaterials.  相似文献   

5.
Single‐atom nanozymes (SAzymes) with high atomic utilization, excellent catalytic activities, and selectivity have recently attracted significant interest. Usually, they contain only isolated metal atoms embedded in host matrices. However, traditional measuring instruments are extremely difficult to obtain their useful structural information due to ultra‐low metal loading, amorphous structure, coordination with light‐weight surface atoms and/or co‐existing of other metal elements. Synchrotron radiation‐based X‐ray absorption fine structure spectroscopy (XAFS) has demonstrated its usefulness for this type of catalyst. In this mini‐review, we have summarized the recent progress using XAFS to characterize the fine atomic structure of these nanozymes. The synthetic strategies of SAzymes, the principle of XAFS, delicate structural information by XAFS, and the applications of SAzymes have been presented. Furthermore, the outlook and challenges in this active research field have also been discussed. We expect that the help of XAFS can offer a wealth of opportunities to design and develop more efficient SAzymes and apply them to various fields.  相似文献   

6.
Non‐heme iron halogenases are synthetically valuable biocatalysts that are capable of halogenating unactivated sp3‐hybridized carbon centers with high stereo‐ and regioselectivity. The reported substrate scope of these enzymes, however, is limited primarily to the natural substrates and their analogues. We engineered the halogenase WelO5* for chlorination of a martinelline‐derived fragment. Using structure‐guided evolution, a halogenase variant with a more than 290‐fold higher total turnover number and a 400‐fold higher apparent kcat compared to the wildtype enzyme was generated. Moreover, we identified key positions in the active site that allow direction of the halogen to different positions in the target substrate. This is the first example of enzyme engineering to expand the substrate scope of a non‐heme iron halogenase beyond the native indole‐alkaloid‐type substrates. The highly evolvable nature of WelO5* underscores the usefulness of this enzyme family for late‐stage halogenation.  相似文献   

7.
Metalloproteins have inspired chemists for many years to synthesize artificial catalysts that mimic native enzymes.As a complementary approach to studying native enzymes or making synthetic models,biosynthetic approach using small and stable proteins to model native enzymes has offered advantages of incorporating non-covalent secondary sphere interactions under physiological conditions.However,most biosynthetic models are restricted to natural amino acids.To overcome this limitation,incorporating unnatural amino acids into the biosynthetic models has shown promises.In this review,we summarize first synthetic,semisynthetic and biological methods of incorporates unnatural amino acids(UAAs)into proteins,followed by progress made in incorporating UAAs into both native metalloproteins and their biosynthetic models to fine-tune functional properties beyond native enzymes or their variants containing natural amino acids,such as reduction potentials of azurin,O_2 reduction rates and percentages of product formation of HCO models in Mb,the rate of radical transport in ribonucleotide reductase(RNR)and the proton and electron transfer pathways in photosystemⅡ(PSⅡ).We also discuss how this endeavour has allowed systematic investigations of precise roles of conserved residues in metalloproteins,such as Metl21 in azurin,Tyr244 that is cross-linked to one of the three His ligands to CuB in HCO,Tyr122,356,730 and 731 in RNR and TyrZ in PSⅡ.These examples have demonstrated that incorporating UAAs has provided a new dimension in our efforts to mimic native enzymes and in providing deeper insights into structural features responsible high enzymatic activity and reaction mechanisms,making it possible to design highly efficient artificial catalysts with similar or even higher activity than native enzymes.  相似文献   

8.
The regulation of electron distribution of single-atomic metal sites by atomic clusters is an effective strategy to boost their intrinsic activity of oxygen reduction reaction (ORR). Herein we report the construction of single-atomic Mn sites decorated with atomic clusters by an innovative combination of post-adsorption and secondary pyrolysis. The X-ray absorption spectroscopy confirms the formation of Mn sites via Mn-N4 coordination bonding to FeMn atomic clusters (FeMnac/Mn-N4C), which has been demonstrated theoretically to be conducive to the adsorption of molecular O2 and the break of O−O bond during the ORR process. Benefiting from the structural features above, the FeMnac/Mn-N4C catalyst exhibits excellent ORR activity with half-wave potential of 0.79 V in 0.5 M H2SO4 and 0.90 V in 0.1 M KOH as well as preeminent Zn-air battery performance. Such synthetic strategy may open up a route to construct highly active catalysts with tunable atomic structures for diverse applications.  相似文献   

9.
Emerging as a cost-effective and robust enzyme mimic, nanozymes have drawn increasing attention with broad applications ranging from cancer therapy to biosensing. Developing nanozymes with both accelerated and inhibited biocatalytic properties in a biological context is intriguing to peruse more advanced functions of natural enzymes, but remains challenging, because most nanozymes are lack of enzyme-like molecular structures. By re-visiting and engineering the well-known Fe-N-C electrocatalyst that has a heme-like Fe-Nx active sites, herein, it is reported that Fe-N-C could not only catalyze drug metabolization but also had inhibition behaviors similar to cytochrome P450 (CYP), endowing it a potential replacement of CYP for preliminary evaluation of massive potential chemicals, drug dosing guide, and outcome prediction. In addition, in contrast to electrocatalysts, the highly graphitic framework of Fe-N-C may not be obligatory for a competitive CYP-like activity.  相似文献   

10.
《结构化学》2020,39(5):831-837
Thermoelectric materials can directly achieve the conversion between heat and electricity, providing a clean and reliable way to alleviate energy crisis. However, the wide use of thermoelectric materials is subjected to their low energy conversion efficiency. Grain boundary engineering is considered as an effective strategy to improve thermoelectric performance, particularly for the most polycrystalline thermoelectric materials in bulk state. Recently, the precise controlling over the microstructure and composition of grain boundary at atomic scale has been achieved by atomic layer deposition(ALD) technology, which has been confirmed in various thermoelectric materials, such as Bi_2Te_(2.7)Se_(0.3), Bi_(0.4)Sb_(1.6)Te_3, and ZrNiSn. Importantly, it is demonstrated that the decoupling between three key thermoelectric parameters, i.e. Seebeck coefficient, electrical conductivity and thermal conductivity, can be realized by ALD-based grain boundary engineering. Moreover, these key parameters can be optimized simultaneously toward the desired direction, which is extremely important for improving the thermoelectric performance. In this review, the relevant progress on the grain boundary engineering by ALD-based strategy is reviewed and some prospects are proposed.  相似文献   

11.
Single atom sites (SAS) often undergo structural recombination in oxygen reduction reaction (ORR), while the effect of valence state and reconstruction on active centers needs to be investigated thoroughly. Herein, the Mn-SAS catalyst with uniform and precise Mn-N4 configuration is rationally designed. We utilize operando synchrotron radiation to track the dynamic evolution of active centers during ORR. Under the applied potential, the structural evolution of Mn-N4 into Mn-N3C and further into Mn-N2C2 configurations is clarified. Simultaneously, the valence states of Mn are increased from +3.0 to +3.8 and then decreased to +3.2. When the potential is removed, the catalyst returned to its initial Mn+3.0-N4 configuration. Such successive evolutions optimize the electronic and geometric structures of active centers as evidenced by theory calculations. The evolved Mn+3.8-N3C and Mn+3.2-N2C2 configurations respectively adjust the O2 adsorption and reduce the energy barrier of rate-determining step. Thus, it can achieve an onset potential of 0.99 V, superior stability over 10,000 cycles, and a high turnover frequency of 1.59 s−1 at 0.85 VRHE. Our present work provides new insights into the construction of well-defined SAS catalysts by regulating the valence states and configurations of active centers.  相似文献   

12.
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.  相似文献   

13.
Although nature evolves its catalysts over millions of years, enzyme engineers try to do it a bit faster. Enzyme active sites provide highly optimized microenvironments for the catalysis of biologically useful chemical transformations. Consequently, changes at these centers can have large effects on enzyme activity. The prediction and control of these effects provides a promising way to access new functions. The development of methods and strategies to explore the untapped catalytic potential of natural enzyme scaffolds has been pushed by the increasing demand for industrial biocatalysts. This Review describes the use of minimal modifications at enzyme active sites to expand their catalytic repertoires, including targeted mutagenesis and the addition of new reactive functionalities. Often, a novel activity can be obtained with only a single point mutation. The many successful examples of active-site engineering through minimal mutations give useful insights into enzyme evolution and open new avenues in biocatalyst research.  相似文献   

14.
The design of artificial systems that mimic highly evolved and finely tuned natural enzymes is a promising subject of intensive research. The assembly of O‐symmetric cubic structures with an Fe8L6 formula was reported through the direct combination of a C4‐symmetric tetraphenylethylene‐based ligand with a C3‐symmetric tris(bipyridine)iron node. The robust metal–organic cubes are rich in π‐electron density and provide favorable interactions with planar polycyclic aromatic hydrocarbons. Within the confined space of the host, the aromatic hydrocarbons molecules are forced closer to the redox active host, and the photoinduced electron transfer (PET) is modified into a pseudo‐intramolecular pathway. These iron vertices within the cubes exhibit suitable redox potential for electrochemical reduction of protons and the well‐modified PET is further tailored to create artificial systems for light‐driven hydrogen evolution from water through the encapsulation of fluorescein dyes. Control experiments based on a mononuclear compound resembling the iron corner of the octahedron suggest an enzymatic dynamic behavior. The new, well‐elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.  相似文献   

15.
Single-atom nanozymes (SAzymes) with specific response to the unique tumor microenvironment (TME) feature providing 100 % metal atoms utilization for high-efficient enzyme-catalyzed therapy and accurate template for the study of therapeutic mechanisms. In this review, we first introduce the various synthetic strategies of SAzymes, and the TME-responsive SAzymes activities. Next, the TME-responsive enhanced antitumor therapeutic approaches based on the enzymatic activities of SAzymes are summarized, and the corresponding therapy mechanisms are elaborated. Subsequently, a concise but concentrated summary, and the challenges and opportunities for the future design and engineering of SAzyme are outlined. As a new discipline, SAzymes have vast space for development in enhanced antitumor therapy. This timely review provides guidance and constructive suggestions for the future of SAzymes.  相似文献   

16.
Emerging as a cost‐effective and robust enzyme mimic, nanozymes have drawn increasing attention with broad applications ranging from cancer therapy to biosensing. Developing nanozymes with both accelerated and inhibited biocatalytic properties in a biological context is intriguing to peruse more advanced functions of natural enzymes, but remains challenging, because most nanozymes are lack of enzyme‐like molecular structures. By re‐visiting and engineering the well‐known Fe‐N‐C electrocatalyst that has a heme‐like Fe‐Nx active sites, herein, it is reported that Fe‐N‐C could not only catalyze drug metabolization but also had inhibition behaviors similar to cytochrome P450 (CYP), endowing it a potential replacement of CYP for preliminary evaluation of massive potential chemicals, drug dosing guide, and outcome prediction. In addition, in contrast to electrocatalysts, the highly graphitic framework of Fe‐N‐C may not be obligatory for a competitive CYP‐like activity.  相似文献   

17.
Developments in Directed Evolution for Improving Enzyme Functions   总被引:1,自引:0,他引:1  
The engineering of enzymes with altered activity, specificity, and stability, using directed evolution techniques that mimic evolution on a laboratory timescale, is now well established. In vitro recombination techniques such as DNA shuffling, staggered extension process (StEP), random chimeragenesis on transient templates (RACHITT), iterative truncation for the creation of hybrid enzymes (ITCHY), recombined extension on truncated templates (RETT), and so on have been developed to mimic and accelerate nature’s recombination strategy. This review discusses gradual advances in the techniques and strategies used for the directed evolution of biocatalytic enzymes aimed at improving the quality and potential of enzyme libraries, their advantages, and disadvantages. Submitted to Applied Biochemistry and Biotechnology  相似文献   

18.
化学模拟唯铁氢化酶研究进展   总被引:2,自引:0,他引:2  
氢化酶(hydrogenase,简称H2ase)是一类存在于微生物体内的重要生物酶,它可以催化氢的氧化反应,也可以催化还原质子产生氢气.根据氢化酶活性中心金属的不同,可以大致分为三类:Fe-Fe氢化酶,Ni-Fe氢化酶和不含金属的氢化酶.本文主要介绍近年来唯铁(Fe-Fe)氢化酶的结构研究和化学模拟最新进展.  相似文献   

19.
Current fuel cell catalysts for the oxygen reduction reaction (ORR) and H2 oxidation use precious metals and, for ORR, require high overpotentials. In contrast, metalloenzymes perform their respective reactions at low overpotentials using earth-abundant metals, making metalloenzymes ideal candidates for inspiring electrocatalytic design. Critical to the success of these enzymes are redox-active metal centers surrounding the active site of the enzyme. These electron transfer (ET) centers not only ensure fast ET to or away from the active site, but also tune the catalytic potential of the reaction as observed in multicopper oxidases as well as playing a role in dictating the catalytic bias of the reaction as realized in hydrogenases. This review summarizes recent advances in studying these ET centers in multicopper oxidases and heme-copper oxidases that perform ORR and in hydrogenases carrying out H2 oxidation. Insights gained from understanding how the reduction potential of the ET centers affects reactivity at the active site in both the enzymes and their models are provided.  相似文献   

20.
We report a new family of titanium–organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi‐gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post‐synthetic metallation of MOFs, our approach is well‐fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band‐gap and electronic properties of the porous solid. Changes in the band‐gap are also rationalized with computational modelling and experimentally confirmed by photocatalytic H2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号