首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A HPLC and a HPTLC-densitometric method were developed for the quantification of prim-O-glucosylcimifugin and 4′-O-β-d-glucosyl-5-O-methylvisamminol the major chromone glucosides in the roots of Saposhnikovia divaricata. The validation of both methods resulted in comparable parameters regarding stability, specificity, linearity, robustness, precision and recovery, whereas complementary advantages were obtained concerning LOD and LOQ. The HPTLC-based densitometry revealed a lower LOD (1.11 versus 4.37 μg mL?1 in HPLC) and LOQ (3.36 versus 13.24 μg mL?1 in HPLC) for prim-O-glucosylcimifugin, whereas the HPLC resulted in a lower LOD (1.00 versus 4.10 μg mL?1 in HPTLC-densitometry) and LOQ (3.04 versus 12.46 μg mL?1 in HPTLC-densitometry) for 4′-O-β-d-glucosyl-5-O-methylvisamminol. Both methods revealed nearly matching contents of the chromones after analysis of different commercially available batches of Saposhnikoviae divaricatae radix with a total content for both chromone glycosides in the range from 0.31 ± 0.011 to 0.56 ± 0.021 % determined by HPLC and between 0.34 ± 0.011 and 0.61 ± 0.009 % determined by HPTLC. The plant material cultivated in Germany showed a very similar content and ratio of both chromone glucosides in comparison to the standard batches originating from China.  相似文献   

2.
3.
Aksoy  B.  K&#;&#;&#;kg&#;zel  &#;.  Rollas  S. 《Chromatographia》2007,66(1):57-63

The objective of the current study was the development and subsequent validation of a simple, sensitive, precise and stability-indicating reversed-phase HPLC method for the determination of ciprofloxacin HCl in pharmaceutical dosage forms in the presence of its potential impurities. The chromatographic separation of ciprofloxacin HCl and its related compounds was achieved on an Inertsil ODS3 column using UV detection. The optimized mobile phase consisted of phosphoric acid solution: acetonitril. The proposed method provided linear responses within the concentration range 250–750 μg mL−1 for ciprofloxacin HCl and 0.5–1.5 μg mL−1 for its related compounds. LOD and LOQ values for the active substance were 5.159 and 15.632 μg mL−1, respectively. Correlation coefficients (r) of the regression equations for the impurities were greater than 0.99 in all cases. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 1% in all instances. No interference from any components of pharmaceutical dosage forms or degradation products was observed.

  相似文献   

4.
Wang  Lishu  Zhao  Daqing  Liu  Yonghong 《Chromatographia》2008,67(11):961-965

A rapid and sensitive LC-MS method has been developed for the determination of luteolin-7-O-β-d-glucoside in rat plasma after solvent extraction. Separation was on an Elite Hypersil ODS2 column (250 mm × 4.6 mm i.d., 5 μm) with a mobile phase of acetonitrile-0.3% acetic acid (26:74, v/v). The samples were analyzed by using positive electrospray ionization MS in selected ion monitoring mode. The selected ions for luteolin-7-O-β-d-glucoside and the internal standard, isoquercitrin, were m/z 448.95 and m/z 464.95. Good linearity was observed over the range of 20–2,000 ng mL−1 with a lower limit of quantification of 20 ng mL−1. No interference peaks or matrix effects were observed. The validated method was applied to the pharmacokinetic study of luteolin-7-O-β-d-glucoside in rat plasma after intravenous administration of Kudiezi Injection.

  相似文献   

5.

This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min−1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL−1 (r = 0.9999) for TR and 40–160 μg mL−1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.

  相似文献   

6.

Fleroxacin is a third generation fluoroquinolone with broad spectrum antibacterial activity. In this work an LC-DAD method for the analysis of fleroxacin was developed and validated using UV detection at 286 nm. The method was validated for linearity, precision, robustness, LOD, LOQ, specificity and accuracy at concentrations of 0.2–20.0 μg mL−1 and r 2 = 1. The LOD and LOQ were 0.059 and 0.197 μg, respectively, the recoveries were 99.92–102.0% and the CV was less than 2.0%. The LC-DAD validated method provided analytical sensitivity, specificity and reproducibility suitable for quality control analysis.

  相似文献   

7.

A reversed phase LC method was developed and validated to analyze the in vitro release of AZT from microemulsions. A mobile phase of acetonitrile:water (15:85) was used. The method validation showed good selectivity and linearity (r = 0.9993) for sample concentrations ranging from 0.6 to 100.0 μg mL−1. The RSD values (0.7–4.3%) and percentage recovery (88.1–109.8%) were within acceptable limits. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.012 and 0.041 μg mL−1. Quantitative analysis of the values obtained in the drug release assay indicates that the microemulsions used promote sustained release of AZT, which follows a Fickian diffusion mechanism.

  相似文献   

8.

A simple and rapid development of a stability-indicating LC method for determination of chloroquine diphosphate in the presence of its hydrolysis, oxidative and photolysis degradation products is described. Stress testing showed that chloroquine diphosphate was degraded under basic conditions and by photolytic treatment but was stable under the other stress conditions investigated. Separation of the drug from its degradation products was achieved with a Nova Pack C18 column, 0.01 M PIC B7 and acetonitrile (40:60 v/v) pH 3.6, as mobile phase. Response was linear over the range 0.08–5.70 μg mL−1 (= 0.996), with limits of detection and quantification (LOD and LOQ) of 0.17 and 0.35 μg mL−1, respectively.

  相似文献   

9.

A stability-indicating ultra-high-performance liquid chromatography (UHPLC) method with a diode array detector was developed and validated for the determination of cis/trans isomers of perindopril l-arginine in bulk substance and pharmaceutical dosage form. The separation was achieved on a Poroshell 120 Hilic (4.6 × 150 mm, 2.7 µm) column using a mobile phase composed of acetonitrile–0.1 % formic acid (20:80 v/v) at a flow rate of 1 mL min−1. The injection volume was 5.0 µL and the wavelength of detection was controlled at 230 nm. The selectivity of the UHPLC-DAD method was confirmed by determining perindopril l-arginine in the presence of degradation products formed during acid–base hydrolysis and oxidation as well as degradation in the solid state, at an increased relative air humidity and in dry air. The method’s linearity was investigated in the ranges 0.40–1.40 µg mL−1 for isomer I and 0.40–2.40 µg mL−1 for isomer II of perindopril l-arginine. The UHPLC-DAD method met the precision and accuracy criteria for the determination of the isomers of perindopril l-arginine. The limits of detection and quantitation were 0.1503 and 0.4555 µg mL−1 for isomer I and 0.0356 and 0.1078 µg mL−1 for isomer II, respectively.

  相似文献   

10.

Two separation techniques were developed for the determination of S-(−)darifenacin (DAR) in the presence of its R-(+) isomer: The first method is high performance liquid chromatography (HPLC) and the second is capillary electrophoresis (CE). Chiral separation for chromatographic HPLC method development was carried out for S-DAR on Daicel CROWNPAK CR (+) (5 μm, 4.0 × 150 mm) column which contains (3,3-diphenyl-1,1-binaphthyl)-crown-6 coated onto a 5.5 μm silica support. The mobile phase system was aqueous acidic 70 % HClO4 (pH 2.5): methanol in the proportion of 90:10 v/v. This current mobile phase was delivered at flow rate 0.8 mL min−1 using UV detector adjusted at 286 nm. In CE method, the enantiomers were separated using 50 μm inner diameter fused-silica capillary cut to total lengths of 31.2 cm using 50 mM phosphate buffer as background electrolyte adjusted to pH 2.5 by triethanolamine. A wide range of cyclodextrins (CDs) were used such as highly sulfated α, γ CDs, hydroxyl propyl-β-CD and sulfobutyl ether-β-CD as chiral selectors. The effects of chiral additives regarding its concentration and content of organic modifier on the enantioseparation were investigated. Linear concentration ranges were from 2.5 to 50 and 40 to 300 μg mL−1 with detection limits 0.67 and 12.28 μg mL−1 for chromatographic HPLC and electrophoretic CE methods, respectively. The two methods were validated according to ICH guidelines with respect to linearity, accuracy, precision, LOQ, LOD and robustness. The suggested methods are suitable for separation and quantitation of S-DAR in tablets.

  相似文献   

11.
Liu  Yongmei  Liao  Mengya  Zhang  Cuiwei  Bai  Yuli  Song  Honglian  Zhang  Yiwen  Wang  Xin 《Chromatographia》2015,78(23):1485-1489

A precise and sensitive LC method for the determination of repertaxin enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 2.0 was accomplished within 20 min using a Chiralpak AD-H column (250 × 4.6 mm; particle size 5 μm) and n-hexane:2-propanol (90:10 v/v) as mobile phase at a flow rate of 1 mL min−1. Eluted analytes were monitored by UV detection at 260 nm. The effects of mobile phase composition, temperature and flow rate on enantiomeric selectivity and on resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 0.002 and 1.0 mg mL−1 (n = 3), and relative standard deviation (RSD) of the inter-batch assay and intra-batch assay was less than 1.27 and 1.16 %. LOD and LOQ for repertaxin were 0.65 and 2.19 μg mL−1; those for its enantiomer were 0.70 and 2.34 μg mL−1, respectively. The method was evaluated and validated by analysis of bulk samples of repertaxin of different enantiomeric purity. It was demonstrated that the method was accurate, robust, and sensitive, and enabled practical analysis of real samples.

  相似文献   

12.
Uslu  Bengi  &#;zden  Tugba 《Chromatographia》2013,76(21):1487-1494

High efficiency and less elution are the basic requirements of high-speed chromatographic separation. In this study, a new gradient reverse phase chromatographic methods were developed using HPLC and UPLC systems for simultaneous determination of enalapril maleate (ENL) and hydrochlorothiazide (HCZ) in pharmaceutical dosage forms. The chromatographic separations of ENL and HCZ were achieved on a Waters μ-Bondapak C 18, (300 × 3.9 mm, 10 μm) and Waters Acquity BEH C18 (100 × 2.1 mm, 1.7 μm) columns for HPLC within 5.30 min and UPLC within a short retention time of 1.95 min, respectively. A linear response was observed over the concentration range 0.270–399 μg mL−1 of ENL, 0.260–399 μg mL−1 of HCZ for HPLC system and 0.270–399 μg mL−1 of ENL and 0.065–249 μg mL−1 of HCZ for UPLC system. Also, limit of detection for ENL was 1.848 ng mL−1 and 31.477 ng mL−1 for HCZ, 2.804 ng mL−1 for ENL and 2.943 ng mL−1 for HCZ using HPLC and UPLC, respectively. The proposed methods were validated according to ICH guideline with respect to precision, accuracy, and linearity. Forced degradation studies were also performed for both compounds in bulk drug samples to demonstrate the specificity and stability indicating power of the HPLC method. Comparison of system performance with conventional HPLC was made with respect to analysis time, efficiency, and resolution.

  相似文献   

13.

This paper describes the validation of an isocratic LC method for the assay of linezolid in tablets. Validation parameters such as linearity, precision, accuracy, specificity, limit of detection, limit of quantitation and robustness were determined. LC was carried out by reversed phase technique on an RP-18 column with a mobile phase composed of 1% acetic acid:methanol:acetonitrile (50:25:25, v/v/v). Linezolid and your combination drug product were exposed to acid, base, oxidation, dry heat and photolytic stress conditions. A linear response (r > 0.9999) was observed in the range of 8.0–20.0 μg mL−1. The retention time of linezolid was 4.6 min. The method showed good recoveries and intra- and inter-day relative standard deviations were less than 1.0%. The LOD and LOQ were 0.21 and 0.63 μg mL−1, respectively. The developed LC method for determination of related substances and assay determination of linezolid can be used to evaluate the quality of regular production samples. It can also be used to test the stability samples of linezolid.

  相似文献   

14.
Zhang  Chunni  Sun  Xinguang  Zhao  Yang  Zhang  Jie  Ma  Fengxia  Long  Zhen  Liang  Lina  Wang  Yingzi  Ma  Baiping 《Chromatographia》2016,79(19):1381-1386

In this work, a simple and rapid high-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) method was first developed for the quantitation of toosendanin, the major constituent of the dried fruit of Melia toosendan Sieb. Et Zucc. Samples were well separated on an Agilent ZOBAX SB C18 column (4.6 mm × 250 mm, 5 μm) by isocratic elution using 33 % acetonitrile and 67 % water containing 0.1 % formic acid (v/v) at the flow rate of 1.0 mL min−1. The nitrogen inlet pressure of the charged aerosol detector (CAD) was 35 psi, and the nebulizer chamber temperature was 35 °C. The established method was well validated. Satisfactory linearity was achieved (r 2 > 0.9997) in a relatively wide concentration range (5–500 μg mL−1). The intra- and inter-day precisions, repeatability, and stability of the method were good with relative standard deviations (RSDs) of 1.05, 2.23, 2.39, and 2.03 %, respectively. The method also showed excellent accuracy with recovery rates of 97.42–101.87 %. Particularly, CAD showed much better sensitivity (LOQ 4 μg mL−1) than evaporative light scattering detector (LOQ 100 μg mL−1) for toosendanin’s determination. The established method was further applied in the quantitation of toosendanin in 39 batches of raw and stir-fried toosendan fructus. The HPLC-CAD method was rapid and accurate, and could be used for the routine analysis and quality control of toosendan fructus and its preparations.

  相似文献   

15.
16.
Chen  Jing  Gu  Jingkai  Zhao  Rui  Dai  Ronghua  Wang  Jinhui 《Chromatographia》2009,69(3-4):361-363

A new method was performed using on-line coupling of nonchiral reversed-phase liquid chromatography (RP-LC) to circular dichroism (CD) spectroscopy for simultaneous determination of artemisinin and arteannuin B in crude plant extracts of Artemisia annua. Analysis was carried out on an LC–CD system equipped with an Agilent TC-C18 column (4.6 mm I.D. × 200 mm L, 5 μm) using gradient of acetonitrile. The method was validated to be practicable and reliable at alterable wavelength in the ranges of 220–420 nm as desired. LOD and LOQ of artemisinin and arteannuin B were 0.08, 0.26 and 0.31, 1.02 μg mL−1, respectively. It was more sensitive than conventional LC–UV and comparatively cheaper than LC–MS in analysis of TCM.

  相似文献   

17.
Sun  Hanwen  Wang  Lixin  Liu  Na  Qiao  Fengxia  Liang  Shuxuan 《Chromatographia》2009,70(11):1685-1689

Solid-phase extraction (SPE) and reversed-phase liquid chromatography (RP-LC) have been used for simple, sensitive simultaneous analysis of cyromazine and melamine residues in liquid milk and eggs. The conditions used for SPE and LC were investigated and optimized. A combined cation-exchange–reversed-phase cartridge was used for clean-up, and an ODS (C18) column (150 mm × 4.6 mm i.d., 5-μm particles) with 62:38 (v/v) 5 mm sodium lauryl sulfate (pH 3.4)–acetonitrile as mobile phase was used for RP-LC. Under the optimum conditions the method limit of detection (LOD) for both cyromazine and melamine was 6.2 μg kg−1 for liquid milk samples, and 11.5 μg kg−1 for egg samples. Average recovery of cyromazine and melamine from milk samples was 90.3%, RSD 4.6–5.6%, and 99.6%, RSD 3.2–4.7%, respectively. Average recovery of cyromazine and melamine from egg samples was 85.3%, RSD 1.0–4.7%, and 89.6%, RSD 3.1–5.0%, respectively. The method enables detection of melamine and cyromazine at levels as low as 20.7 μg kg−1 in liquid milk and 38.3 μg kg−1 in egg.

  相似文献   

18.
Xu  Quanyun Alan  Kazerooni  Reza  Thapar  Jay K.  Andersson  Borje D.  Madden  Timothy L. 《Chromatographia》2009,70(9-10):1505-1510

A rapid and reliable UPLC method was developed and validated for the determination of busulfan in human plasma. After protein precipitation, derivatization, and liquid–liquid extraction, separation of derivatized busulfan was achieved on an Acquity BEH C18 column using a gradient mobile phase consisting of a trifluoroacetic acid aqueous solution (0.2%, v/v) and acetonitrile. The column temperature was maintained at 50 °C and UV detection was carried out at 254 nm. The complete analytical run time was 1.3 min, 7-fold faster than our previous LC methodology. Quantification was performed using external standardization and calibration curves were linear (r ≥ 0.999) over the dynamic range of 0.05–5.00 μg mL−1. Intra-day and inter-day coefficients of variation were ≤6.9 and 3.9%, respectively, across the range of concentrations. Accuracy of the analytical method expressed as the relative error percentage was better than 5.4%. LOD and LOQ were 0.013 and 0.025 μg mL−1, respectively. Data obtained using the UPLC method was compared to those obtained from our previously used LC method by Deming regression analysis. The UPLC method was accurate, sensitive, and greatly increased sample analysis throughput as compared to our previous LC methodology allowing for a 4-fold increase in the number of patients who could be monitored during transplant therapy.

  相似文献   

19.
Xiong  Xunyu  Zhang  Qunzheng  Xiong  Fengmei  Tang  Yuhai 《Chromatographia》2008,67(11):929-934

A simple and sensitive method was developed for the determination of three nonsteroidal anti-inflammatory drugs (NSAIDs)—ibuprofen, naproxen and fenbufen in human plasma. The method involved in column liquid chromatographic separation and chemilumenescence (CL) detection based on the CL reaction of NSAIDs, potassium permanganate (KMnO4) and sodium sulfite (Na2SO3) in sulfuric acid (H2SO4) medium. The chromatographic separation was carried out using a reversed-phase C18 column, which allowed the selective determination of the three medicines in the complicated samples. The special features of the CL detector provided lower LOD for determination than that of existing chromatographic alternatives. The results indicated that the linear ranges were 0.01–10.0 μg mL−1 for ibuprofen, 0.001–1.0 μg mL−1 for naproxen, and 0.01–10.0 μg mL−1 for fenbufen. The limits of detection were 0.5 ng mL−1 for ibuprofen, 0.05 ng mL−1 for naproxen and 0.5 ng mL−1 for fenbufen (S/N = 3). All average recoveries were in the range of 90.0–102.3%. Finally, the method had been satisfactorily applied for the determination of ibuprofen, naproxen and fenbufen in human plasma samples.

  相似文献   

20.
Wang  Qi  Chen  Xiuli  Zhang  Cuiwei  Liao  Mengya  Hu  Mingxing  Lin  Shuo  Xie  Yongmei  Yin  Wenya  Zhang  Yiwen 《Chromatographia》2015,78(21):1395-1400

A precise and sensitive LC method for determination of enantiomeric purity of trelagliptin has been developed and validated. Pre-column derivatization was performed before separation. Baseline separation with a resolution factor >2.5 was accomplished within 10 min by use of a Chiralpak AD column (250 × 4.6 mm; particle size 5 µm) and n-hexane–2-propanol (90:10 v/v) as mobile phase at a flow rate of 1 mL min−1. Eluted analytes were monitored by UV detection at 260 nm. The effects of mobile phase composition and temperature on enantiomeric selectivity and on resolution of enantiomers were thoroughly investigated. Calibration curves were plotted within the concentration range 0.005–2 mg mL−1 (n = 12), and recoveries between 98.23 and 101.34 % were obtained, with relative standard deviation (RSD) <1.39 %. LOD and LOQ for the trelagliptin derivative were 1.51 and 5.03 µg mL−1; those for its enantiomer were 1.49 and 4.94 µg mL−1, respectively. The method was evaluated and validated by analysis of bulk samples of trelagliptin of different enantiomeric purity. It was demonstrated that the method was accurate, robust, and sensitive, and enabled practical analysis of real samples.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号