首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of mononuclear complexes of the type, [MLCl2] [M = CoII, NiII, CuII, and ZnII] with a pyrimidene‐type ligand, which was synthesized by the reaction of 2‐furaldehyde and 1, 8‐diaminonaphthalene, was obtained. The ligand and its complexes were characterized by elemental analysis, IR, NMR, EPR, and UV/Vis spectroscopy, ESI‐mass spectrometry, magnetic susceptibility, molar conductivity, and thermogravimetric analyses. On the basis of UV/Vis spectroscopic and magnetic susceptibility data, an octahedral arrangement was assigned around all metal ions. The low molar conductivity data for all the complexes show their non‐electrolytic nature. The thermal behavior of the complexes was studied by TGA analyses. The electrochemical study carried out on the CuII complex exhibits a quasi reversible redox process. The ligand and its complexes showed potential antioxidant and antimicrobial activities.  相似文献   

2.
A new Schiff‐base ligand having a potentially coordinating thioether group (2‐quinoline‐N‐(2′‐methylthiophenyl)methyleneimine, qmtpm ) has been prepared. The synthesis, structure, UV‐Vis and EPR studies of one copper(II) and two cobalt(II) complexes from this ligand is reported. The X‐ray structures of the CuII and CoII chlorido complexes 1 and 2 reveal the metal atoms in highly distorted square‐pyramidal environments constituted of one tridentate ligand and two anions. On the other hand, the thiocyanato CoII compound 3 exhibits a distorted trigonal‐bipyramidal structure. These structural variations are apparently due to the different counter‐ions which leads to distinct lattice interactions. The spectroscopic data obtained by EPR and UV‐Vis investigations are in agreement with the solid‐state structures of the coordination compounds.  相似文献   

3.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

4.
The zinc finger protein tristetraprolin (TTP) regulates inflammation by downregulating cytokine mRNAs. Misregulation results in arthritis, sepsis and cancer, and there is an interest in modulating TTP activity with exogenous agents. Gold has anti-inflammatory properties and has recently been shown to modulate the signaling pathway that produces TTP, suggesting that TTP may be a target of gold. The reactivity of [AuIII(terpy)Cl]Cl2 with TTP was investigated by UV/Vis spectroscopy, spin-filter inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy and native electrospray ionization mass spectrometry. AuIII was found to replace zinc in the protein active site in the reduced AuI form, with the AuI ion coordinated to two cysteine residues in a linear geometry. The replacement of ZnII with AuI results in loss of both secondary structure and RNA binding function. In contrast, when ZnIITTP is bound to its RNA target, no replacement of ZnII with AuI is observed, even in the presence of excess AuIIIterpy. This discovery of differential reactivity of gold with TTP versus TTP/RNA offers a potential strategy for selective targeting with gold complexes to control inflammation.  相似文献   

5.
The molecular structure, electrochemistry, spectroelectrochemistry and electrocatalytic oxygen reduction reaction (ORR) features of two CoII porphyrin(2.1.2.1) complexes bearing Ph or F5Ph groups at the two meso-positions of the macrocycle are examined. Single crystal X-ray analysis reveal a highly bent, nonplanar macrocyclic conformation of the complex resulting in clamp-shaped molecular structures. Cyclic voltammetry paired with UV/Vis spectroelectrochemistry in PhCN/0.1 M TBAP suggest that the first electron addition corresponds to a macrocyclic-centered reduction while spectral changes observed during the first oxidation are consistent with a metal-centered CoII/CoIII process. The activity of the clamp-shaped complexes towards heterogeneous ORR in 0.1 M KOH show selectivity towards the 4e ORR pathway giving H2O. DFT first-principle calculations on the porphyrin catalyst indicates a lower overpotential for 4e ORR as compared to the 2e pathway, consistent with experimental data.  相似文献   

6.
Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time‐resolved X‐ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the CoI intermediate of cobaloxime, which is a non‐noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X‐ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive CoI state under similar conditions. Possible deactivation mechanisms are discussed.  相似文献   

7.
Cobalt(diimine‐dioxime) complexes catalyze hydrogen evolution with low overpotentials and remarkable stability. In this study, DFT calculations were used to investigate their catalytic mechanism, to demonstrate that the initial active state was a CoI complex and that H2 was evolved in a heterolytic manner through the protonation of a CoII? hydride intermediate. In addition, these catalysts were shown to adjust their electrocatalytic potential for hydrogen evolution to the pH value of the solution and such a property was assigned to the presence of a H+‐exchange site on the oxime bridge. It was possible to establish that protonation of the bridge was directly involved in the H2‐evolution mechanism through proton‐coupled electron‐transfer steps. A consistent mechanistic scheme is proposed that fits the experimentally determined electrocatalytic and electrochemical potentials of cobalt(diimine‐dioxime) complexes and reproduces the observed positive shift of the electrocatalytic potential with increasing acidity of the proton source.  相似文献   

8.
The isomorphous partial substitution of Zn2+ ions in the secondary building unit (SBU) of MFU‐4l leads to frameworks with the general formula [MxZn(5–x)Cl4(BTDD)3], in which x≈2, M=MnII, FeII, CoII, NiII, or CuII, and BTDD=bis(1,2,3‐triazolato‐[4,5‐b],[4′,5′‐i])dibenzo‐[1,4]‐dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU‐4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis‐NIR, TGA, and gas sorption measurements. Several MFU‐4l derivatives show high catalytic activity in a liquid‐phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co‐ and Cu derivatives with chloride side‐ligands are the most active catalysts. Upon thermal treatment, several side‐ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, CoII‐azide units in the SBU of Co‐MFU‐4l are converted into CoII‐isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of CuII‐fluoride units with H2 at 240 °C leads to CuI and proceeds through the heterolytic cleavage of the H2 molecule.  相似文献   

9.
New graphene oxide (GO)‐tethered–CoII phthalocyanine complex [CoPc–GO] was synthesized by a stepwise procedure and demonstrated to be an efficient, cost‐effective and recyclable photocatalyst for the reduction of carbon dioxide to produce methanol as the main product. The developed GO‐immobilized CoPc was characterized by X‐ray diffraction (XRD), FTIR, XPS, Raman, diffusion reflection UV/Vis spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP‐AES), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). FTIR, XPS, Raman, UV/Vis and ICP‐AES along with elemental analysis data showed that CoII–Pc complex was successfully grafted on GO. The prepared catalyst was used for the photocatalytic reduction of carbon dioxide by using water as a solvent and triethylamine as the sacrificial donor. Methanol was obtained as the major reaction product along with the formation of minor amount of CO (0.82 %). It was found that GO‐grafted CoPc exhibited higher photocatalytic activity than homogeneous CoPc, as well as GO, and showed good recoverability without significant leaching during the reaction. Quantitative determination of methanol was done by GC flame‐ionization detector (FID), and verification of product was done by NMR spectroscopy. The yield of methanol after 48 h of reaction by using GO–CoPc catalyst in the presence of sacrificial donor triethylamine was found to be 3781.8881 μmol g?1 cat., and the conversion rate was found to be 78.7893 μmol g?1cat. h?1. After the photoreduction experiment, the catalyst was easily recovered by filtration and reused for the subsequent recycling experiment without significant change in the catalytic efficiency.  相似文献   

10.
Alkyl transition metal reagents are being increasingly used for alkylations in organic synthesis. They have various advantages over alkyllithium and alkyl-magnesium reagents including higher selectivity, lower basicity, and—as long as the transition metal is not in its highest oxidation state—their willingness to undergo oxidative addition with electrophiles. Alkyl derivatives of FeII and CoII, which are not stabilized by special ligands but still can be easily handled, are in many cases superior to the well-known alkyl–CuI and -MnII reagents and can also undergo unexpected reactions. The introduction of alkyl-cyanoate complexes of FeII and CoII, the cyanide ligands of which (in contrast to neutral π-acidic ligands) do not reduce the reactivity, has led to further advances. Reaction mechanisms will be discussed and comparisons will be made with alkylating reagents containing CuI, MnII, NiII, or TiIV as well as with Pd-catalyzed coupling reactions. Furthermore, it will be shown that super-ate FeII complexes are almost certainly the reactive species in highly selective catalytic alkylations.  相似文献   

11.
In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII−Cl]+ species results in the formation of [CoII4-L)(OH2)]2+. Further reduction produces [CoI4-L)(OH2)]+, which undergoes a rate-limiting structural rearrangement to [CoI5-L)]+ before being protonated to form [CoIII−H]2+. The rate of [CoIII−H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII−H]2+ estimated from PR experiments, we found that while the protonation of [CoIII−H]2+ is unfavorable, [CoII−H]+ reacts with protons to produce H2. The catalytic activity for H2 evolution tracks the hydricity of the [CoII−H]+ intermediate.  相似文献   

12.
Octa(benzo-15-crown-5)-substituted phthalocyanine and its complexes with d-metals (NiII, CoII, CuII, ZnII, and CdII) have been synthesized for the first time. The compounds were studied by UV—Vis spectroscopy, MALDI-TOF mass spectrometry, NMR, ESR, IR spectroscopy, and Raman spectroscopy. The dependence of the spectral characteristics of the studied compounds on the ion radius of the complexing agent was demonstrated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1439–1447, July, 2008.  相似文献   

13.
Two types of imidazole ligands were introduced both at the end of tetramolecular and into the loop region of unimolecular DNA G-quadruplexes. The modified oligonucleotides were shown to complex a range of different transition-metal cations including NiII, CuII, ZnII and CoII, as indicated by UV/Vis absorption spectroscopy and ion mobility mass spectrometry. Molecular dynamics simulations were performed to obtain structural insight into the investigated systems. Variation of ligand number and position in the loop region of unimolecular sequences derived from the human telomer region (htel) allows for a controlled design of distinct coordination environments with fine-tuned metal affinities. It is shown that CuII, which is typically square-planar coordinated, has a higher affinity for systems offering four ligands, whereas NiII prefers G-quadruplexes with six ligands. Likewise, the positioning of ligands in a square-planar versus tetrahedral fashion affects binding affinities of CuII and ZnII cations, respectively. Gaining control over ligand arrangement patterns will spur the rational development of transition-metal-modified DNAzymes. Furthermore, this method is suited to combine different types of ligands, for example, those typically found in metalloenzymes, inside a single DNA architecture.  相似文献   

14.
The first coupled operando EPR/UV‐Vis/ATR‐IR spectroscopy setup for mechanistic studies of gas‐liquid phase reactions is presented and exemplarily applied to the well‐known copper/TEMPO‐catalyzed (TEMPO=(2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and CuI/CuII has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)CuII‐O2??‐TEMPO (bpy=2,2′‐bipyridine, NMI=N‐methylimidazole) intermediate formed by electron transfer from CuI to molecular O2.  相似文献   

15.
The structural, spectroscopic, and electrochemical properties of [Co{(naph)2dien}(N3)] and [Co{(naph)2dpt}(N3)], where (naph)2dien?=?bis-(2-hydroxy-1-naphthaldimine)-N-diethylenetriaminedianion and (naph)2dpt?=?bis-(2-hydroxy-1-naphthaldimine)-N-dipropylenetriaminedianion have been investigated. These complexes are characterized by elemental analyses, IR, and UV–Vis spectroscopy. The crystal structures of these complexes have been determined by X-ray diffraction. The geometry around cobalt is distorted octahedral. The electrochemical behavior of these complexes in acetonitrile solution was also investigated. Both complexes show an irreversible CoIII–CoII reduction at ca. ?0.8?V, accompanied by dissociation of the axial CoII–N3 bond. The in vitro antibacterial activities of these complexes were tested against Staphylococcus aureus and Bacillus licheniformis.  相似文献   

16.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

17.
New clathrochelate complexes of manganese, iron and cobalt containing peripheral organometallic manganese moieties cymantrene or tromancenium were synthesized via self-assembly from di/tri-topic dioximes, metal templates and cymantrene/tromancenium boronic acid pinacol esters. These air-stable, highly colored, oligometallic complexes are composed of various combinations of MnIFeIIMnI, MnICoIIMnI, MnIMnIIMnIIMnI and MnICoIICoIIMnI metal assemblies with corresponding complicated magnetic and electrochemical properties. Full spectroscopic and structural characterization by 1H/11B/13C NMR, HRMS, IR, UV-vis, single crystal XRD and CV (cyclic voltammetry) is provided. Tetrametallic complexes containing tromanceniumyl substituents with two CoII or MnII central metals exhibit promising anticancer properties against different tumor cell lines.  相似文献   

18.
The Schiff base prepared by reacting (–)-(1R,2R)-1,2-cyclohexanediamine with 2-hydroxyacetophenone was used as a ligand for CoII and CuII. The coordination compounds were studied by u.v.–vis. absorption and by circular dichroism (c.d.) spectroscopy in solution. The complexes are four-coordinated in a slightly distorted square planar symmetry. The distortion from planarity is a main factor influencing the chiral surroundings of the metal ion. The d–d and c.t. transitions are consistent with the observed distortion, which arises from intramolecular interactions between the methyl groups attached to the Schiff base imine carbon and hydrogen atoms of the cyclohexane ring. The electrochemical properties of the CoII and CuII complexes were observed in MeCN but investigations revealed weaker oxygen activation than of CoII analogue with salicylaldehyde. The CuII complex is reduced in H2O to CuI which disproportionates to CuII and Cu0.  相似文献   

19.
We report the synthesis of a mixed‐valence ruthenium complex, bearing pyrene moieties on one side of the ligands as anchor groups. Composites consisting of mixed‐valence ruthenium complexes and SWNTs were prepared by noncovalent π–π interactions between the SWNT surface and the pyrene anchors of the Ru complex. In these composites, the long axis of the Ru complexes was aligned in parallel to the principal direction of the SWNT. The optimized conformation of these complexes on the SWNT surface was calculated by molecular mechanics. The composites were examined by UV/Vis absorption and FT‐IR spectroscopy, XPS, and SEM analysis. Furthermore, their electrochemical properties were evaluated. Cyclic voltammograms of the composites showed reversible oxidation waves at peak oxidation potentials (Epox) = 0.86 and 1.08 V versus Fc+/Fc, which were assigned to the RuII‐RuII/RuII‐RuIII and the RuII‐RuIII/RuIII‐RuIII oxidation events of the dinuclear ruthenium complex, respectively. Based on these observations, we concluded that the electrochemical properties and mixed‐valence state of the dinuclear ruthenium complexes were preserved upon attachment to the SWNT surface.  相似文献   

20.
The electronic structure and photochemistry of copper formate clusters, CuI2(HCO2)3 and CuIIn(HCO2)2n+1, n≤8, are investigated in the gas phase by using UV/Vis spectroscopy in combination with quantum chemical calculations. A clear difference in the spectra of clusters with CuI and CuII copper ions is observed. For the CuI species, transitions between copper d and s/p orbitals are recorded. For stoichiometric CuII formate clusters, the spectra are dominated by copper d–d transitions and charge-transfer excitations from formate to the vacant copper d orbital. Calculations reveal the existence of several energetically low-lying isomers, and the energetic position of the electronic transitions depends strongly on the specific isomer. The oxidation state of the copper centers governs the photochemistry. In CuII(HCO2)3, fast internal conversion into the electronic ground state is observed, leading to statistical dissociation; for charge-transfer excitations, specific excited-state reaction channels are observed in addition, such as formyloxyl radical loss. In CuI2(HCO2)3, the system relaxes to a local minimum on an excited-state potential-energy surface and might undergo fluorescence or reach a conical intersection to the ground state; in both cases, this provides substantial energy for statistical decomposition. Alternatively, a CuII(HCO2)3Cu0− biradical structure is formed in the excited state, which gives rise to the photochemical loss of a neutral copper atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号