首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The B3LYP density functional studies on the dirhodium tetracarboxylate-catalyzed C-H bond activation/C-C bond formation reaction of a diazo compound with an alkane revealed the energetics and the geometry of important intermediates and transition states in the catalytic cycle. The reaction is initiated by complexation between the rhodium catalyst and the diazo compound. Driven by the back-donation from the Rh 4d(xz) orbital to the C[bond]N sigma*-orbital, nitrogen extrusion takes place to afford a rhodium[bond]carbene complex. The carbene carbon of the complex is strongly electrophilic because of its vacant 2p orbital. The C[bond]H activation/C[bond]C formation proceeds in a single step through a three-centered hydride transfer-like transition state with a small activation energy. Only one of the two rhodium atoms works as a carbene binding site throughout the reaction, and the other rhodium atom assists the C[bond]H insertion reaction. The second Rh atom acts as a mobile ligand for the first one to enhance the electrophilicity of the carbene moiety and to facilitate the cleavage of the rhodium[bond]carbon bond. The calculations reproduce experimental data including the activation enthalpy of the nitrogen extrusion, the kinetic isotope effect of the C[bond]H insertion, and the reactivity order of the C[bond]H bond.  相似文献   

2.
Palladation of C2-protected diimidazolium salts with Pd(OAc)2 afforded complexes comprising C4-bound N-heterocyclic dicarbene ligands. The reactivity of these complexes towards Lewis acids (AgBF4, AgOAc) and Br?nsted acids (H2SO4, H3PO4, HOAc) revealed that abnormal C4 bonding of the carbenes markedly increases the nucleophilicity of the coordinated palladium center as compared to C2 bonding. Despite its formal +2 charge, the palladium center in these complexes is best described as a Lewis base. The abnormal carbene bonding mode induces new reaction patterns such as the formation of a Pd-Ag adduct. Based on metallation studies including the palladation of a dissymmetric diimidazolium salt, a rationale for the selective activation of the C4-H bond in the diimidazolium precursor salts is proposed.  相似文献   

3.
Sterically similar palladium dicarbene complexes have been synthesized that comprise permethylated dicarbene ligands which bind the metal center either in a normal coordination mode via C2 or abnormally via C4. Due to the strong structural analogy of the complexes, differences in reactivity patterns may be attributed to the distinct electronic impact of normal versus abnormal carbene bonding, while stereoelectronic effects are negligible. Unique reactivity patterns have been identified for the abnormal carbene complexes, specifically upon reaction with Lewis acids and in oxidative addition‐reductive elimination sequences. These reactivities as well as analytical investigations using X‐ray diffraction and X‐ray photoelectron spectroscopy indicate that the C4 bonding mode increases the electron density at the metal center substantially, classifying such C4‐bound carbene ligands amongst the most basic neutral donors known thus far. A direct application of this enhanced electron density at the metal center is demonstrated by the catalytic H2 activation with abnormal carbene complexes under mild conditions, leading to a catalytic process for the hydrogenation of olefins.  相似文献   

4.
The dialkylamides of tin react with ironpentacarbonyl to form carbene complexes. With Me2Sn(NMe2)2 and Sn(NMe2)4 yellow dicarbene complexes are formed by addition of two Sn---N bonds to adjacent carbonyl groups. The two carbenoid systems on the central atom are parts of a chelate ligand connected by an ---O---Sn---O--- bridge. Using [Sn(NMe2)2]2, a red monomeric compound (CO)3Fe(CONMe2)2Sn containing the same cyclic structural unit can be isolated. The free activation enthalpy of rotation about the C(carbene)---N bond in the tin (IV) dicarbene complexes was found to be 16.5 kcal mol-1.  相似文献   

5.
A series of N-heterocyclic dicarbene palladium(II) complexes has been characterised combining different techniques (cyclic voltammetry, XPS and 13C NMR spectroscopy), in order to evaluate the influence of the dicarbene ligand on the electronic properties of the metal centre. The data obtained with the three techniques give relevant information, cyclic voltammetry appearing the most useful approach. In addition, the observed variations of the physico-chemical properties of the complexes confirm the possibility of finely tuning the electronic properties of the palladium(II) centre by changing the characteristics of the dicarbene ligand (wingtip substituents, bridging group between the carbene units, type of heterocyclic ring).  相似文献   

6.
Rhodium(III) complexes comprising monoanionic C,C,C-tridentate dicarbene ligands activate Si-H bonds and catalyse the hydrolysis of hydrosilanes to form silanols and siloxanes with concomitant release of H(2). In dry MeNO(2), selective formation of siloxanes takes place, while changing conditions to wet THF produces silanols exclusively. Silyl ethers are formed when ROH is used as substrate, thus providing a mild route towards the protection of alcohols with H(2) as the only by-product. With alkynes, comparably fast hydrosilylation takes place, while carbonyl groups are unaffected. Further expansion of the Si-H bond activation to dihydrosilanes afforded silicones and polysilyl ethers. Mechanistic investigations using deuterated silane revealed deuterium incorporation into the abnormal carbene ligand and thus suggests a ligand-assisted mechanism involving heterolytic Si-H bond cleavage.  相似文献   

7.
Rhodium complexes of the imidazolylidene (C-im) N-heterocyclic carbene (NHC) ligand, C-im-pyH(+), bearing a nicotinamide cation substituent (pyH(+)) have been targeted for ligand-centered uptake and delivery of hydride ion. This work reveals that rhodium(I) complexes such as [Rh(C-im-pyH(+))(COD)X][PF(6)] (1, a: X = Cl, b: X = I) undergo facile C-metalation of the nicotinamide ring to afford rhodium complexes of a novel chelate ligand, C,C'-im-py, with coordinated imidazolylidene (C(im)) and pyridylidene (C(py)) NHC-donors. Seven examples were characterized and include rhodium(III) monomers of the general formula [Rh(C,C'-im-py)L(x)I(2)](z+) (2: z = 1, L = H(2)O or solvent, x = 2; 3, 5, 7: z = 0, L = carboxylate, x = 1) and novel rhodium(II) dimers, the anti/syn-isomers of [Rh(2)(C,C'-im-py)(2)(μOAc)(2)I(2)] (4-anti/syn). The NMR data, backed by DFT calculations, is consistent with attribution of the C,C'-im-py ligand as a bis(carbene) donor. Single crystal X-ray diffraction studies are reported for 2, 3, 4-anti, 4-syn and 7. Consistently, within the each complex, the Rh-C(im) bond length is shorter than the Rh-C(py) bond length, which is the opposite trend to that expected based on simple electronic considerations. It is proposed that intramolecular steric interactions imposed by different rings in the rigid C,C'-im-py chelate ligand dictate the observed Rh-C(NHC) bond lengths. Attempts to add hydride to the C-metalated nicotinamide ring in 3 were unsuccessful. The redox behavior of 3 and 4 and, for comparison, an analogous bis(imidazolylidene)rhodium(III) monomer (8), were characterized by cyclic voltammetry, electron paramagnetic resonance (EPR), and UV-vis spectroelectrochemistry. In 3 and 4, the C-metalated nicotinamide ring is found to exhibit a one-electron reduction process at far lower potential (-2.34 V vs. Fc(+)/Fc in acetonitrile) than the two-electron nicotinamide cation-dihydronicotinamide couple found for the corresponding nonmetalated ring (-1.24 V). The C,C'-ligand is electrochemically silent over a large potential range (from -2.3 V to the anodic solvent limit), thus for both 3 and 4 the first reduction processes are metal-centered. For 4-anti, the cyclic voltammetry and UV-vis spectrochemical results are consistent with a diamagnetic [Rh(I)Rh(II)](2) tetrameric reduction product. Density functional theory (DFT) calculations were used to further probe the uptake of hydride ion by the nicotinamide ring, both before and after C-metalation. It is found that C-metalation significantly decreases the ability of the nicotinamide ring to take up hydride ion, which is attributed to the "carbene-like" character of a C-metalated pyridylidene ring.  相似文献   

8.
Density functional theory was employed to investigate rhodium(I)‐catalyzed C–C bond activation of siloxyvinylcyclopropanes and diazoesters. The B3LYP/6‐31G(d,p) level (LANL2DZ(f) for Rh) was used to optimize completely all intermediates and transition states. The computational results revealed that the most favorable pathway was the channel forming the methyl‐branched acyclic product p1 in path A (cyclooctadiene (cod) as the ligand), and the oxidative addition was the rate‐determining step for this channel. It proceeded mainly through the complexation of diazoester to rhodium, rhodium–carbene formation, coordination of siloxyvinylcyclopropane, oxidative addition (C2–C3 bond cleavage) of siloxyvinylcyclopropane, carbene migratory insertion, β‐hydrogen elimination and reductive elimination. The complexation of diazoester to rhodium occurred prior to the coordination of siloxyvinylcyclopropane. Also, the role of the ligands cod, chlorine and 1,4‐dioxane, the effect of di‐rhodium catalyst and the solvent effect are discussed in detail.  相似文献   

9.
Reactivity and structural studies of unusual rhodium and iridium systems bearing two N-heterocyclic carbene (NHC) ligands are presented. These systems are capable of intramolecular C-H bond activation and lead to coordinatively unsaturated 16-electron complexes. The resulting complexes can be further unsaturated by simple halide abstraction, leading to 14-electron species bearing an all-carbon environment. Saturation of the vacant sites in the 16- and 14-electron complexes with carbon monoxide permits a structural comparison. DFT calculations show that these electrophilic metal centers are stabilized by pi-donation of the NHC ligands.  相似文献   

10.
C-H bond activation was observed in a novel PCO ligand 1 (C(6)H(CH(3))(3)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))) at room temperature in THF, acetone, and methanol upon reaction with the cationic rhodium precursor, [Rh(coe)(2)(solv)(n)()]BF(4) (solv = solvent; coe = cyclooctene). The products in acetone (complexes 3a and 3b) and methanol (complexes 4a and 4b) were fully characterized spectroscopically. Two products were formed in each case, namely those containing uncoordinated (3a and 4a) and coordinated (3b and 4b) methoxy arms, respectively. Upon heating of the C-H activation products in methanol at 70 degrees C, C-C bond activation takes place. Solvent evaporation under vacuum at room temperature for 3-4 days also results in C-C activation. The C-C activation product, ((CH(3))Rh(C(6)H(CH(3))(2)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))BF(4)), was characterized by X-ray crystallography, which revealed a square pyramidal geometry with the BF(4)(-) anion coordinated to the metal. Comparison to the structurally similar and isoelectronic nonchelating Rh-PC complex system and computational studies provide insight into the reaction mechanism. The reaction mechanism was studied computationally by means of a two-layer ONIOM model, using both the B3LYP and mPW1K exchange-correlation functionals and a variety of basis sets. Polarization functions significantly affect relative energetics, and the mPW1K profile appears to be more reliable than its B3LYP counterpart. The calculations reveal that the electronic requirements for both C-C and C-H activation are essentially the same (14e intermediates are the key ones). On the other hand, the steric requirements differ significantly, and chelation appears to play an important role in C-C bond activation.  相似文献   

11.
Liu Y  Xiao W  Wong MK  Che CM 《Organic letters》2007,9(21):4107-4110
Three types of novel artemisinin derivatives have been synthesized through transition-metal-catalyzed intramolecular carbenoid and nitrenoid C-H bond insertion reactions. With rhodium complexes as catalysts, lactone 11 was synthesized via carbene insertion reaction at the C16 position in 90% yield; oxazolidinone 13 was synthesized via nitrene insertion reaction at the C10 position in 87% yield based on 77% conversion; and sulfamidate 14 was synthesized via nitrene insertion reaction at the C8 position in 87% yield.  相似文献   

12.
Transmetalation reactions from chromium(0) Fischer carbene complexes to late-transition-metal complexes (palladium(0), copper(I), and rhodium(I)) have been studied computationally by density functional theory. The computational data were compared with the available experimental data. In this study, the different reaction pathways involving the different metal atoms have been compared with each other in terms of their activation barriers and reaction energies. Although the reaction profiles for the transmetalation reactions to palladium and copper are quite similar, the computed energy values indicate that the process involving palladium as catalyst is more favorable than that involving copper. In contrast to these transformations, which occur via triangular heterobimetallic species, the transmetalation reaction to rhodium leads to a new heterobimetallic species in which a carbonyl ligand is also transferred from the Fischer carbene to the rhodium catalyst. Moreover, the structure and bonding situation of the so far elusive heterobimetallic complexes are briefly discussed.  相似文献   

13.
Thermolysis of Ru(PPh3)3(CO)H2 with the N-heterocyclic carbene bis(1,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene) (IMes) results in C-C activation of an Ar-CH3 bond in one of the mesityl rings of the carbene ligand. Upon addition of IMes to Ru(PPh3)3(CO)H2 at room temperature in the presence of an alkene, C-H bond activation is observed instead. The thermodynamics of these C-C and C-H cleavage reactions have been probed using density functional theory.  相似文献   

14.
This feature article summarizes the progress achieved thus far in using C4-bound imidazolylidenes as a new class of ligands for transition metals. Since the discovery of this unusual carbene bonding mode in 2001, various rational routes towards complexes containing C4-bound carbenes have evolved. These advances allowed for studying the impact of this new type of ligand on the transition metal center, both from a fundamental point of view as well as from a more applied perspective, in particular for catalytic applications. The promising results accomplished in this relatively short period of time demonstrate the potential of C4-bound imidazolylidenes as unique carbene ligands for inducing catalytic activity and for mediating unprecedented transformations.  相似文献   

15.
Reaction of the pentamethylcyclopentadienyl rhodium iodide dimer [Cp*RhI2]2 with 1,1′‐diphenyl‐3,3′‐methylenediimidazolium diiodide in non‐alcohol solvents, in the presence of base, led to the formation of bis‐carbene complex [Cp*Rh(bis‐NHC)I]I (bis‐NHC=1,1′‐diphenyl‐4,4′‐methylenediimidazoline‐5,5′‐diylidene). In contrast, when employing alcohols as the solvent in the same reaction, cleavage of a methylene C?N bond is observed, affording ether‐functionalized (cyclometalated) carbene ligands coordinated to the metal center and the concomitant formation of complexes with a coordinated imidazole ligand. Studies employing other 1,1′‐diimidazolium salts indicate that the cyclometalation step is a prerequisite for the activation/scission of the C?N bond and, based on additional experimental data, a SN2 mechanism for the reaction is tentatively proposed.  相似文献   

16.
The synthesis of rhodium(I) and iridium(I) complexes of the bis(diisopropylamino)carbene is described for the first time. The formamidinium chloride and the free bis(diisopropylamino)carbene (L) were used as consecutive precursor compounds to form the metal complexes. Spectroscopic and, for LRh(cod)Cl, crystallographic data are presented for the complexes LRh(cod)Cl and LIr(cod)Cl (L=bis(diisopropylamino)carbene). The ligand properties of the acyclic bis(diisopropylamino)carbene are compared with imidazolin-2-ylidenes and imidazolidin-2-ylidenes as ligands in related rhodium(I) carbonyl complexes. Bis(diisopropylamino)carbene is the most basic known carbene ligand to date.  相似文献   

17.
Based on the PCN ligand 2, a remarkable degree of control over C-C versus C-H bond activation and versus formation of an agostic C-C complex was demonstrated by choice of cationic [Rh(CO)(n)(C(2)H(4))(2-n)] (n=0, 1, 2) precursors. Whereas reaction of 2 with [Rh(C(2)H(4))(2)(solv)(n)]BF(4) results in exclusive C-C bond activation to yield product 5, reaction with the dicarbonyl precursor [Rh(CO)(2)(solv)(n)]BF(4) leads to formation of the C-H activated complex 9. The latter process is promoted by intramolecular deprotonation of the C-H bond by the hemilabile amine arm of the PCN ligand. The mixed monocarbonyl monoethylene Rh species [Rh(CO)(C(2)H(4))]BF(4) reacts with the PCN ligand 2 to give an agostic complex 7. The C-C activated complex 5 is easily converted to the C-H activated one (9) by reaction with CO; the reaction proceeds by a unique sequence of 1,2-metal-to-carbon methyl shift, agostic interaction, and C-H activation processes. Similarly, the C-C agostic complex 7 is converted to the same C-H activated product 9 by treatment with CO.  相似文献   

18.
Kinetic data for the C-H bond activation of 2-phenylpyridine by Ru(II)(carboxylate)(2)(p-cymene) I (acetate) and I' (pivalate) are available for the first time. They reveal an irreversible autocatalytic process catalyzed by the coproduct HOAc or HOPiv (acetonitrile, 27 °C). The overall reaction is indeed accelerated by the carboxylic acid coproduct and water. It is retarded by a base, in agreement with an autocatalytic process induced by HOAc or HOPiv that favors the dissociation of one carboxylate ligand from I and I' and consequently the ensuing complexation of 2-phenylpyridine (2-PhPy). The C-H bond activation initially delivers Ru(O(2)CR)(o-C(6)H(4)-Py)(p-cymene) A or A', containing one carboxylate ligand (OAc or OPiv, respectively). The overall reaction is accelerated by added acetates. Consequently, C-H bond activation (faster for acetate I than for pivalate I') proceeds via an intermolecular deprotonation of the C-H bond of the ligated 2-PhPy by the acetate or pivalate anion released from I or I', respectively. The 18e complexes A and A' easily dissociate, by displacement of the carboxylate by the solvent (also favored by the carboxylic acid), to give the same cationic complex B(+) {[Ru(o-C(6)H(4)-Py)(p-cymene)(MeCN)](+)}. Complex B(+) is reactive toward oxidative addition of phenyl iodide, leading to the diphenylated 2-pyridylbenzene.  相似文献   

19.
The synthesis of a ruthenium carbene complex based on a sulfonyl‐substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal–carbon interaction can be tuned between a Ru?C single bond with additional electrostatic interactions and a Ru?C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non‐polar bonds (O?H, H?H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non‐innocent ligand supporting the bond activation as nucleophilic center in the 1,2‐addition across the metal–carbon double bond. This metal–ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.  相似文献   

20.
A detailed mechanistic study of the intramolecular hydroamination of alkenes with amines catalyzed by rhodium complexes of a biaryldialkylphosphine is reported. The active catalyst is shown to contain the phosphine ligand bound in a κ(1), η(6) form in which the arene is π-bound to rhodium. Addition of deuterated amine to an internal olefin showed that the reaction occurs by trans addition of the N-H bond across the C═C bond, and this stereochemistry implies that the reaction occurs by nucleophilic attack of the amine on a coordinated alkene. Indeed, the cationic rhodium fragment binds the alkene over the secondary amine, and the olefin complex was shown to be the catalyst resting state. The reaction was zero-order in substrate, when the concentration of olefin was high, and a primary isotope effect was observed. The primary isotope effect, in combination with the observation of the alkene complex as the resting state, implies that nucleophilic attack of the amine on the alkene is reversible and is followed by turnover-limiting protonation. This mechanism constitutes an unusual pathway for rhodium-catalyzed additions to alkenes and is more closely related to the mechanism for palladium-catalyzed addition of amide N-H bonds to alkenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号