首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, we will develop the Bessel collocation method to find approximate solutions of the Chen system, which is a three‐dimensional system of ODEs with quadratic nonlinearities. This scheme consists of reducing the problem to a nonlinear algebraic equation system by expanding the approximate solutions by means of the Bessel polynomials with unknown coefficients. By help of the collocation points and the matrix operations of derivatives, the unknown coefficients of the Bessel polynomials are calculated. The accuracy and efficiency of the proposed approach are demonstrated by two numerical examples and performed with the aid of a computer code written in MAPLE. In addition, comparisons between our method and the homotopy perturbation method numerical solutions are made with the accuracy of solutions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a collocation method is presented to find the approximate solution of high‐order linear complex differential equations in rectangular domain. By using collocation points defined in a rectangular domain and the Bessel polynomials, this method transforms the linear complex differential equations into a matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Bessel coefficients. The proposed method gives the analytic solution when the exact solutions are polynomials. Numerical examples are included to demonstrate the validity and applicability of the technique and the comparisons are made with existing results. The results show the efficiency and accuracy of the present work. All of the numerical computations have been performed on a computer using a program written in MATLAB v7.6.0 (R2008a). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a numerical scheme for approximate solutions of the fractional Volterra’s model for population growth of a species in a closed system. In fact, the Bessel collocation method is extended by using the time-fractional derivative in the Caputo sense to give solutions for the mentioned model problem. In this extended of the method, a generalization of the Bessel functions of the first kind is used and its matrix form is constructed. And then, the matrix form based on the collocation points is formed for the each term of this model problem. Hence, the method converts the model problem into a system of nonlinear algebraic equations. We give some numerical applications to show efficiency and accuracy of the method. In applications, the reliability of the technique is demonstrated by the error function based on accuracy of the approximate solution.  相似文献   

4.
This paper presents an exponential matrix method for the solutions of systems of high‐order linear differential equations with variable coefficients. The problem is considered with the mixed conditions. On the basis of the method, the matrix forms of exponential functions and their derivatives are constructed, and then by substituting the collocation points into the matrix forms, the fundamental matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equations. By solving this system, the unknown coefficients are determined and thus the approximate solutions are obtained. Also, an error estimation based on the residual functions is presented for the method. The approximate solutions are improved by using this error estimation. To demonstrate the efficiency of the method, some numerical examples are given and the comparisons are made with the results of other methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, a numerical technique is presented for the approximate solution of the Bagley–Torvik equation, which is a class of fractional differential equations. The basic idea of this method is to obtain the approximate solution in a generalized form of the Bessel functions of the first kind. For this purpose, by using the collocation points, the matrix operations and a generalization of the Bessel functions of the first kind, this technique transforms the Bagley–Torvik equation into a system of the linear algebraic equations. Hence, by solving this system, the unknown Bessel coefficients are computed. The reliability and efficiency of the proposed scheme are demonstrated by some numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, a collocation method is developed to find an approximate solution of higher order linear complex differential equations with variable coefficients in rectangular domains. This method is essentially based on the matrix representations of the truncated Taylor series of the expressions in equation and their derivates, which consist of collocation points defined in the given domain. Some numerical examples with initial and boundary conditions are given to show the properties of the method. All results were computed using a program written in scientific WorkPlace v5.5 and Maple v12. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

7.
In this paper, a new collocation BEM for the Robin boundary value problem of the conductivity equation ▽(γ▽u) = 0 is discussed, where the 7 is a piecewise constant function. By the integral representation formula of the solution of the conductivity equation on the boundary and interface, the boundary integral equations are obtained. We discuss the properties of these integral equations and propose a collocation method for solving these boundary integral equations. Both the theoretical analysis and the error analysis are presented and a numerical example is given.  相似文献   

8.
In this paper, the problem of solving the one-dimensional parabolic partial differential equation subject to given initial and non-local boundary conditions is considered. The approximate solution is found using the radial basis functions collocation method. There are some difficulties in computing the solution of the time dependent partial differential equations using radial basis functions. If time and space are discretized using radial basis functions, the resulted coefficient matrix will be very ill-conditioned and so the corresponding linear system cannot be solved easily. As an alternative method for solution, we can use finite-difference methods for discretization of time and radial basis functions for discretization of space. Although this method is easy to use but an accurate solution cannot be provided. In this work an efficient collocation method is proposed for solving non-local parabolic partial differential equations using radial basis functions. Numerical results are presented and are compared with some existing methods.  相似文献   

9.
A new kind of numerical method based on rational spectral collocation with the sinh transformation is presented for solving parameterized singularly perturbed two-point boundary value problems with one boundary layer. By means of the sinh transformation, the original Chebyshev points are mapped onto the transformed ones clustered near the singular points of the problem. The results from asymptotic analysis as regards the singularity of the solution are employed to determine the parameters in the transformation. Numerical experiments including several nonlinear cases illustrate the high accuracy and efficiency of our method.  相似文献   

10.
Summary. We consider an indirect boundary integral equation formulation for the mixed Dirichlet-Neumann boundary value problem for the Laplace equation on a plane domain with a polygonal boundary. The resulting system of integral equations is solved by a collocation method which uses a mesh grading transformation and a cosine approximating space. The mesh grading transformation method yields fast convergence of the collocation solution by smoothing the singularities of the exact solution. A complete stability and solvability analysis of the transformed integral equations is given by use of a Mellin transform technique, in a setting in which each arc of the polygon has associated with it a periodic Sobolev space. Received April 15, 1995 / Revised version received April 10, 1996  相似文献   

11.
This article is concerned with a generalization of a functional differential equation known as the pantograph equation which contains a linear functional argument. In this article, we introduce a collocation method based on the Bessel polynomials for the approximate solution of the pantograph equations. The method is illustrated by studying the initial value problems. The results obtained are compared by the known results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

12.
This article presents a Taylor collocation method for the approximate solution of high‐order linear Volterra‐Fredholm integrodifferential equations with linear functional arguments. This method is essentially based on the truncated Taylor series and its matrix representations with collocation points. Some numerical examples, which consist of initial and boundary conditions, are given to show the properties of the technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

13.
Boundary collocation is a method for obtaining approximate solutions of boundary problems for linear partial differential equations, for which complete families of particular solutions are explicitly known. The method contains various decisions which are important for its performance, such as choice of solution subspace, choice of basis for the subspace, and choice of collocation points. Using a model problem, some particular strategies for the determination of collocation points are investigated.  相似文献   

14.
Summary In this paper the convergence analysis of a direct boundary elecment method for the mixed boundary value problem for Laplace equation in a smooth plane domain is given. The method under consideration is based on the collocation solution by constant elements of the corresponding system of boundary integral equations. We prove the convergence of this method, provide asymptotic error estimates for the BEM-solution and give some numerical examples.  相似文献   

15.
In this article, an inverse problem of determining an unknown time‐dependent source term of a parabolic equation is considered. We change the inverse problem to a Volterra integral equation of convolution‐type. By using Sinc‐collocation method, the resulting integral equation is replaced by a system of linear algebraic equations. The convergence analysis is included, and it is shown that the error in the approximate solution is bounded in the infinity norm by the condition number and the norm of the inverse of the coefficient matrix multiplied by a factor that decays exponentially with the size of the system. Some examples are given to demonstrate the computational efficiency of the method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1584–1598, 2010  相似文献   

16.
In this paper, an improved Legendre collocation method is presented for a class of integro-differential equations which involves a population model. This improvement is made by using the residual function of the operator equation. The error differential equation, gained by residual function, has been solved by the Legendre collocation method (LCM). By summing the approximate solution of the error differential equation with the approximate solution of the problem, a better approximate solution is obtained. We give the illustrative examples to demonstrate the efficiency of the method. Also we compare our results with the results of the known some methods. In addition, an application of the population model is made.  相似文献   

17.
In this study, an approximate method based on Bernoulli polynomials and collocation points has been presented to obtain the solution of higher order linear Fredholm integro-differential-difference equations with the mixed conditions. The method we have used consists of reducing the problem to a matrix equation which corresponds to a system of linear algebraic equations. The obtained matrix equation is based on the matrix forms of Bernoulli polynomials and their derivatives by means of collocations. The solutions are obtained as the truncated Bernoulli series which are defined in the interval [a,b]. To illustrate the method, it is applied to the initial and boundary values. Also error analysis and numerical examples are included to demonstrate the validity and applicability of the technique.  相似文献   

18.
A new and novel approach for analyzing boundary value problems for linear and for integrable nonlinear PDEs was recently introduced. For linear elliptic PDEs, an important aspect of this approach is the characterization of a generalized Dirichlet-Neumann map: given the derivative of the solution along a direction of an arbitrary angle to the boundary, the derivative of the solution perpendicularly to this direction is computed without solving on the interior of the domain. For this computation, a collocation-type numerical method has been recently developed. Here, we study the collocation’s coefficient matrix properties. We prove that, for the Laplace’s equation on regular polygon domains with the same type of boundary conditions on each side, the collocation matrix is block circulant, independently of the choice of basis functions. This leads to the deployment of the FFT for the solution of the associated collocation linear system, yielding significant computational savings. Numerical experiments are included to demonstrate the efficiency of the whole computation.  相似文献   

19.
In this paper, we present a collocation method to obtain the approximate solutions of continuous population models for single and interacting species. By using the Bessel polynomials and collocation points, this method transforms population model into a matrix equation. The matrix equation corresponds to a system of nonlinear equations with the unknown Bessel coefficients. The reliability and efficiency of the proposed scheme are demonstrated by two numerical examples and performed on the computer algebraic system Maple.  相似文献   

20.
This paper aims to develop a novel numerical approach on the basis of B-spline collocation method to approximate the solution of one-dimensional and two-dimensional nonlinear stochastic quadratic integral equations. The proposed approach is based on the hybrid of collocation method, cubic B-spline, and bi-cubic B-spline interpolation and Itô approximation. Using this method, the problem solving turns into a nonlinear system solution of equations that is solved by a suitable numerical method. Also, the convergence analysis of this numerical approach has been discussed. In the end, examples are given to test the accuracy and the implementation of the method. The results are compared with the results obtained by other methods to verify that this method is accurate and efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号