首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We discuss the photochemistry and photodissociation dynamics of thymine as revealed by two-colour photofragment Doppler spectroscopy and by one-colour slice imaging. Thymine is optically excited into the pipi* state, known to deactivate quickly. The H atom photofragment spectra are dominated by two-photon excitation processes with subsequent statistical dissociation. This can be explained by absorption of a second photon from a long-lived dark state to a highly excited state that quickly deactivates to the electronic ground state. No evidence was found for an important role of the pisigma* excited state identified in adenine and many other heterocyclic molecules.  相似文献   

2.
The excited-state properties and related photophysical processes of the acidic and basic forms of pterin have been investigated by the density functional theory and ab initio methodologies. The solvent effects on the low-lying states have been estimated by the polarized continuum model and combined QM/MM calculations. Calculations reveal that the observed two strong absorptions arise from the strong pi --> pi* transitions to 1(pipi*L(a)) and 1(pipi*L(b)) in the acidic and basic forms of pterin. The first 1(pipi*L(a)) excited state is exclusively responsible for the experimental emission band. The vertical 1(n(N)pi*) state with a small oscillator strength, slightly higher in energy than the 1(pipi*L(a)) state, is less accessible by the direct electronic transition. The 1(n(N)pi*) state may be involved in the photophysical process of the excited pterin via the 1(pipi*L(a)/n(N)pi*) conical intersection. The radiationless decay of the excited PT to the ground state experiences a barrier of 13.8 kcal/mol for the acidic form to reach the (S(1)/S(0)) conical intersection. Such internal conversion can be enhanced with the increase in excitation energy, which will reduce the fluorescence intensity as observed experimentally.  相似文献   

3.
The excited state dynamics of the purine base 9-methyladenine (9Me-Ade) has been investigated by time- and energy-resolved photoelectron imaging spectroscopy and mass-selected ion spectroscopy, in both vacuum and water-cluster environments. The specific probe processes used, namely a careful monitoring of time-resolved photoelectron energy distributions and of photoion fragmentation, together with the excellent temporal resolution achieved, enable us to derive additional information on the nature of the excited states (pipi*, npi*, pisigma*, triplet) involved in the electronic relaxation of adenine. The two-step pathway we propose to account for the double exponential decay observed agrees well with recent theoretical calculations. The near-UV photophysics of 9Me-Ade is dominated by the direct excitation of the pipi* ((1)L(b)) state (lifetime of 100 fs), followed by internal conversion to the npi* state (lifetime in the ps range) via conical intersection. No evidence for the involvement of a pisigma* or a triplet state was found. 9Me-Ade-(H(2)O)(n) clusters have been studied, focusing on the fragmentation of these species after the probe process. A careful analysis of the fragments allowed us to provide evidence for a double exponential decay profile for the hydrates. The very weak second component observed, however, led us to conclude that the photophysics were very different compared with the isolated base, assigned to a competition between (i) a direct one-step decay of the initially excited state (pipi* L(a) and/or L(b), stabilised by hydration) to the ground state and (ii) a modified two-step decay scheme, qualitatively comparable to that occurring in the isolated molecule.  相似文献   

4.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

5.
Exploratory electronic structure calculations have been performed with the CC2 (simplified singles and doubles coupled-cluster) method for two conformers of the adenine (A)-thymine (T) base pair, with emphasis on excited-state proton-transfer reactions. The Watson-Crick conformer and the most stable (in the gas-phase) conformer of the A-T base pair have been considered. The equilibrium geometries of the ground state and of the lowest excited electronic states have been determined with the MP2 (second-order M?ller-Plesset) and CC2 methods, respectively. Vertical and adiabatic excitation energies, oscillator strengths, and dipole moments of the excited states are reported. Of particular relevance for the photochemistry of the A-T base pair are optically dark (1)pipi* states of charge-transfer character. Although rather high in energy at the ground-state equilibrium geometry, these states are substantially lowered in energy by the transfer of a proton, which thus neutralizes the charge separation. A remarkable difference of the energetics of the proton-transfer reaction is predicted for the two tautomers of A-T: in the Watson-Crick conformer, but not in the most stable conformer, a sequence of conical intersections connects the UV-absorbing (1)pipi* state in a barrierless manner with the electronic ground state. These conical intersections allow a very fast deactivation of the potentially reactive excited states in the Watson-Crick conformer. The results provide evidence that the specific hydrogen-bonding pattern of the Watson-Crick conformer endows this structure with a greatly enhanced photostability. This property of the Watson-Crick conformer of A-T may have been essential for the selection of this species as carrier of genetic information in early stages of the biological evolution.  相似文献   

6.
The complete active space with second-order perturbation theory/complete active space self-consistent-field method was used to explore the nonradiative decay mechanism for excited 9H-guanine. On the 1pipi* (1L(a)) surface we determined a conical intersection (CI), labeled (S0pipi*)(CI), between the 1pipi* (1L(a)) excited state and the ground state, and a minimum, labeled (pipi*)min. For the 1pipi* (1L(a)) state, its probable deactivation path is to undergo a spontaneous relaxation to (pipi*)min first and then decay to the ground state through (S0pipi*)(CI), during which a small activation energy is required. On the 1n(N)pi* surface a CI between the 1n(N)pi* and 1pipi* (1L(a)) states was located, which suggests that the 1n(N)pi* excited state could transform to the 1pipi* (1L(a)) excited state first and then follow the deactivation path of the 1pipi* (1L(a)) state. This CI was also possibly involved in the nonradiative decay path of the second lowest 1pipi* (1L(b)) state. On the 1n(O)pi* surface a minimum was determined. The deactivation of the 1n(O)pi* state to the ground state was estimated to be energetically unfavorable. On the 1pisigma* surface, the dissociation of the N-H bond of the six-membered ring is difficult to occur due to a significant barrier.  相似文献   

7.
The phototautomerization mechanism of a model nitro enamine (NEA) chromophore (incorporated in the structure of a highly photolabile pesticide, tetrahydro-2-(nitromethylene)-2H-1,3-thiazine) has been studied using complete active space self-consistent field reaction path computations. The optically accessible 1pipi* excited state of NEA involves separation of charge and correlates diabatically with the ground state of the tautomerized acinitro imine (ANI) form. For optimum photostabilization, the 1pipi* state of NEA should be S1: in this case, the tautomer would be efficiently formed via a diabatic intramolecular proton-transfer pathway passing through an S1/S0 conical intersection, followed by a facile thermal back proton-transfer reaction. However, in NEA itself the lowest excited states correspond to nitro group 1npi* states, and there are additional surface crossings that provide a mechanism for populating the 1npi* manifold. The above results indicate that the high photolability observed for the pesticide [Kleier, D.; Holden, I.; Casida, J. E.; Ruzo, L. O. J. Agric. Food Chem. 1985, 33, 998-1000] has to be ascribed to photochemistry originating on the 1npi* manifold of states, populated indirectly from the 1pipi* state.  相似文献   

8.
The electronic excited state dynamics of protonated tryptamine ions generated by an electrospray source have been studied by means of photoinduced dissociation technique on the femtosecond time scale. The result is that the initially excited state decays very quickly within 250 fs. The photoinduced dissociation channels observed can be sorted in two groups of fragments coming from two competing primary processes on the singlet electronic surface. The first one corresponds to a hydrogen-atom loss channel that creates a tryptamine radical cation. The radical cation subsequently fragments to smaller ions. The second process is internal conversion due to the H-atom recombination on the electronic ground state. Time-dependent density functional theory calculations show that an excited pisigma* state dissociative along the protonated amino N-H stretch crosses both the locally excited pipi* state and the electronic ground state S(0) and thus triggers the photofragmentation reactions. The two processes have equivalent quantum yields, approximately equal to 50% of the fragments coming from the H-atom loss reaction. The two primary reaction paths can clearly be distinguished by their femtosecond pump/probe dynamics recorded on the different fragmentation channels.  相似文献   

9.
A realistic dynamics simulation study is reported for the ultrafast radiationless deactivation of 9H-adenine. The simulation follows two different excitations induced by two 80 fs (fwhm) laser pulses that are different in energy: one has a photon energy of 5.0 eV, and the other has a photon energy of 4.8 eV. The simulation shows that the excited molecule decays to the electronic ground state from the (1)pipi* state in both excitations but through two different radiationless pathways: in the 5.0 eV excitation, the decay channel involves the out-of-plane vibration of the amino group, whereas in the 4.8 eV excitation, the decay strongly associates with the deformation of the pyrimidine at the C 2 atom. The lifetime of the (1) npi* state determined in the simulation study is 630 fs for the 5.0 eV excitation and 1120 fs for the 4.8 eV excitation. These are consistent with the experimental values of 750 and 1000 fs. We conclude that the experimentally observed difference in the lifetime of the (1) npi* state at various excitations results from the different radiationless deactivation pathways of the excited molecule to the electronic ground state.  相似文献   

10.
Complete active-space self-consistent field (CASSCF) calculations with a (14,11) active space and density functional theory calculations followed by Car-Parrinello molecular dynamic simulations are reported for the p-hydroxyphenacyl acetate, diethyl phosphate, and diphenyl phosphate phototrigger compounds. These calculations considered the explicit hydrogen bonding of water molecules to the phototrigger compound and help reveal the role of water in promoting the photodeprotection and subsequent rearrangement reactions for the p-hydroxyphenacyl caged phototrigger compounds experimentally observed in the presence of appreciable amounts of water but not observed in neat nonproton solvents like acetonitrile. The 267 nm excitation of the phototrigger compounds leads to an instantaneous population of the S3(1pipi*) state Franck-Condon region, which is followed by an internal conversion deactivation route to the S1(1npi*) state via a 1pipi*/1npi* vibronic coupling. The shorter lifetime of the S1(1npi*) state (approximately 1 ps) starting from the FC geometry is terminated by a fast intersystem crossing at a 3pipi*/3npi* intersection with a structure of mixed pipi*/npi* excitation in the triplet state. The deprotection reaction is triggered by a proton (or hydrogen atom) transfer assisted by water bridges and emanates from this pipi*/npi* triplet state intersection. With the departure of the leaving group, the reaction evolves into a water-mediated post-deprotection phase where the spin inversion of pQM (X, 3A) leads to a spiroketone in the ground state by a cyclization process that is followed by an attack of water to produce a 1,1'-di-hydroxyl-spiroketone. Finally, the H atom of the hydroxyl in 1,1'-di-hydroxyl-spiroketon transfers back to the p-O atom aided by water molecules to generate the p-hydroxyphenyl-acetic acid final rearrangement product.  相似文献   

11.
The modified nucleic acid base, 1-cyclohexyluracil, was studied by femtosecond transient absorption spectroscopy in protic and aprotic solvents of varying polarity. UV excitation at 267 nm populates the lowest-energy bright state, a (1)pipi* state, which has a lifetime of 120-270 fs, depending on the solvent. In all solvents, this initial bright state population bifurcates with approximately 60% undergoing subpicosecond nonradiative decay to the electronic ground state and the remaining population branching to a singlet dark state. The latter absorbs between 340 and 450 nm. The latter state is assigned to the lowest-energy (1)npi* state. It decays to the electronic ground state with a lifetime that varies from 26 ps in water to at least several nanoseconds in aprotic solvents. The results suggest that the two nonradiative decay pathways identified for photoexcited uracil in recent quantum chemical calculations (Matsika, S. J. Phys. Chem. A. 2004, 108, 7584) are simultaneously operative in a wide variety of solvent environments. The lowest-energy triplet state was also detected by transient absorption. The triplet population appears in a few picoseconds and is not formed from the thermalized (1)npi* state. It is suggested that high spin-orbit coupling is found only along initial segments of the nonradiative decay pathways. Efficient intersystem crossing prior to vibrational cooling offers a possible explanation for the wavelength-dependent triplet yields seen in single DNA bases.  相似文献   

12.
The excited state dynamics of protonated tryptophan-leucine ions WLH+, generated in an electrospray source, is investigated by photo-induced fragmentation in the gas phase, using femtosecond laser pulses. Two main features arise from the experiment. Firstly, the initially excited pipi* state decays very quickly with 2 time constants of 1 and 10 ps. Secondly, the transient signals recorded on different fragments are not the same which indicates two competing primary fragmentation processes. One involves a direct dissociation from the excited state that gives evidence for a non-statistical deactivation path. The other is attributed to a statistical decay following internal conversion to the ground electronic surface.  相似文献   

13.
The photodissociation dynamics of allyl bromide was investigated at 234, 265, and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br* (2P1/2) and Br (2P3/2) atoms. The Br fragments show a bimodal translational energy distribution, while the Br* fragments reveal one translational energy distribution. The vertical excited energies and the mixed electronic character of excited states were calculated at ab initio configuration interaction method. It is presumed that the high kinetic energy bromine atoms are attributed to the predissociation from 1(pipi*) or 1(pisigma*) state to the repulsive 1(nsigma*) state, and to the direct dissociation from 3(nsigma*) and 3(pisigma*) states, while the low kinetic energy bromine atoms stem from internal conversion from the lowest 3(pipi*) state to 3(pisigma*) state.  相似文献   

14.
15.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

16.
The photochemistry of aliphatic disulfides is presented. The photolysis products are photoionized with coherent vacuum ultraviolet radiation and analyzed by time-of-flight mass spectrometry. With 248-nm excitation, the predominant dissociation pathway is S—S bond cleavage. With 193-nm excitation, S—S bond cleavage, C—S bond cleavage, and molecular rearrangements are all observed as primary processes. The branching ratio for S—S bond cleavage relative to C—S bond cleavage is typically 1–2 orders of magnitude greater at 248 run than 193 run. This wavelength dependence cannot be explained readily by photodissociation from the ground electronic state. The ground state S—S bond energy, ~ 280 kJ/mol, is much larger than the C—S bond energy, ~ 235 kJ/mol. If dissociation occurred from the ground state, higher wavelength radiation would be expected to favor the lower energy process, but the opposite effect is observed. Thus, excited state photochemistry is indicated. These results are discussed with respect to the differences between low and high energy collision-induced dissociation of peptides that contain disulfide linkages and to the possibility of achieving bond-selective photodissociation of such ions.  相似文献   

17.
Computational evidence at the CASPT2 level supports that the lowest excited state pipi* contributes to the S1/S0 crossing responsible for the ultrafast decay of singlet excited cytosine. The computed radiative lifetime, 33 ns, is consistent with the experimentally derived value, 40 ns. The nOpi* state does not play a direct role in the rapid repopulation of the ground state; it is involved in a S2/S1 crossing. Alternative mechanisms through excited states pisigma* or nNpi* are not competitive in cytosine.  相似文献   

18.
We present a theoretical study of the low-lying electronic excitations in the [Pt(P((n)Bu)(3))(2)(ethynylbenzene)(2)] molecule. Although the ground electronic state possesses D(2)(h) symmetry, with both ethynylbenzene ligands being equivalent, in the excited state the molecule breaks the symmetry deforming along a b(3u) direction and localizing the excitation on a single ligand. This localized exciton is of (3)pipi* nature with the unpaired electron and hole spread over one of the benzene rings and the ethyne linkage. The localization indicates an activated hopping mechanism for transport. Our estimate of the barrier is approximately 0.61 eV.  相似文献   

19.
The potential energy surfaces of the C-O cleavage, rotational isomerization, keto-enolic tautomerization, and dehydration reactions of acetylacetone in the lowest triplet and ground states have been determined using the complete active space self-consistent field and density functional theory methods. The main photochemical mechanism obtained indicates that the acetylacetone molecule in the S(2)((1)pipi*) state can relax to the T(1)((3)pipi*) state via the S(2)-S(1) vibronic interaction and an S(1)/T(1)/T(2) intersection. The C-O fission pathway is the predominant dissociation process in the T(1)((3)pipi) state. Rotational isomerization reactions proceed difficultly in the ground state but very easily in the T(1)((3)pipi*) state. Keto-enolic tautomerization takes place with little probability for acetylacetone in the gas phase.  相似文献   

20.
An earlier time-dependent quantum wave packet propagation study of the photochemistry of Ph-OH [J. Chem. Phys. 2005, 122, 224315] is extended to investigate isotope effects (for Ph-OD) and the dynamics initiated by direct (vibronically induced) excitation to the (1)πσ* state. The isotope effect is significant only when the initially excited state is (1)ππ*, that is, there are noticeable changes not only in the time scale but also in the branching ratio (?/X?) for the electronic states of the product Ph-O radical. In contrast, the isotope effect on the dynamics initiated by direct excitation to the (1)πσ* state is very small. Our most important observation for the dynamics initiated by direct excitation to the (1)πσ* state is that the initial excitation of the O-H stretch mode does not result in a noticeable enhancement of the product Ph-O radical in the ? state, which corresponds to a dissociating H atom with low kinetic energy. The initial excitation of the CCOH torsion mode is the main reason for the enhancement of the product Ph-O radical in the ? state that was observed in a vibrationally mediated two-photon experiment [J. Chem. Phys.2008, 128, 104307].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号