首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A glassy carbon electrode modified with organic?Cinorganic pillared montmorillonite was used for voltammetric detection of mercury(II) in water. High sensitivity is obtained due to the use of the montmorillonites which displays outstanding capability in terms of adsorbing mercury ion due to its high specific surface and the presence of multiple binding sites. The experimental parameters and the effect of a chelating agent were optimized to further enhance sensitivity and selectivity. Linear calibration curves were obtained over the Hg(II) concentration range from 10 to 800???g?L?1 for 5?min accumulation, with a detection limit of 1???g?L?1. Simultaneous determination of Hg(II) and Cu(II) was also studied, and no interference was observed.
Figure
Scheme for the Organic-inorganic pillared clay adsorbing mercury.  相似文献   

2.
We describe a paper-based chemiluminescence (CL) test for the determination of mercury(II) ion. A single-stranded DNA aptamer was first covalently immobilized via its amino groups to the hydroxy groups on the surface of cellulosic paper. The aptamer probes can capture Hg(II) ions due to their specific interaction with thymine. The CL reagent (a caboxylated phenylene-ethynylene referred to as P-acid) was immobilized on nanoporous silver (NPS@P-acid) and used a CL label on the aptamer. The stripe is then contacted with a sample containing Hg(II) ions and CL is induced by the addition of permanganate. CL intensity depends on the concentration of Hg(II) because Hg(II) increases the quantity of the P-acid-conjugated aptamer. The highly active surface of the NPS@P-acid composites results in an 8-fold higher CL intensity compared to the use of pure P-acid. This enables Hg(II) ion to be quantified in the 20 nM to 0.5 μM concentration range, with a limit of detection as low as 1 pM. This CL aptasensor is deemed to represent a promising tool for simple, rapid, and sensitive detection of Hg(II).
Figure
?  相似文献   

3.
Water–soluble fluorescent silver nanoclusters (Ag NCs) were prepared with the assistance of commercially available polyinosinic acid (PI) or polycytidylic acid (PC). The fluorescence of the Ag NCs is effectively quenched by trace mercury(II) ions, which can be applied for their detection. The response of the Ag NCs prepared with PI to Hg(II) ion is linear in the Hg(II) concentration range from 0.05 to 1.0 μM (R2?=?0.9873), and from 0.5 to 10 μM of Hg(II) (R2?=?0.9971) for Ag NCs prepared with PC. The detection limits are 3.0 nM and 9.0 nM (at an S/N of 3), respectively. The method is simple, sensitive and fairly selective.
Figure
Water-soluble fluorescent Ag nanoclusters (NCs) were facilely prepared using commercially available polyinosinic acid or polycytidylic acid. The fluorescence intensity of the as-prepared Ag NCs was effectively quenched by trace Hg2+, which was used for the detection of Hg2+ in water samples with good performance.  相似文献   

4.
We report on a simple method for the determination of iodide in aqueous solution by exploiting the fluorescence enhancement that is observed if the complex formed between carbon dots and mercury ion is exposed to iodide. Fluorescent carbon dots (C-dots) were treated with Hg(II) ion which causes quenching of the emission of the C-dots. On addition of iodide, the Hg(II) ions are removed from the complex due to the strong interaction between Hg(II) and iodide. This causes the fluorescence to be restored and enables iodide to be determined in the 0.5 to 20 μM concentration range and with a detection limit of ~430 nM. The test is highly selective for iodide (over common other anions) and was used for the determination of iodide in urine.
Figure
A“turn-on” fluorescent probe based on carbon dots was obtained and using it to determine the concentration of iodide according to the fluorescent enhancement in aqueous solution  相似文献   

5.
We report on a novel mercury(II)-controlled approach for the disassembly of gold nanorods (AuNRs) that has led to a detection system for Hg(II). The modified AuNRs were fabricated by functionalizing AuNRs with L-cysteine via a thiol group chemisorption-type of interaction. L-cysteine induces the assembly of AuNRs through cooperative electrostatic interaction upon which the color of the solution of the AuNRs changes from blue-green to gray dark. The addition of Hg(II), in turn, causes the disassembly of the modified AuNRs and the color of the solution returns to blue-green. This effect enables the optical determination of Hg(II) in aqueous solution, with a linear response in the 0.5 to 250 μM Hg(II) concentration range, an excellent selectivity for Hg(II), and with recoveries ranging from 99 % to 106 % in spiked environmental water samples.
Figure
A novel mercury-controlled approach for the disassembly of L-cysteine-modified Au nanorods was proposed, with which a simple, specific and sensitive assay for Hg2+ was developed.  相似文献   

6.
We describe a solid phase extractor for selective separation and preconcentration of Hg(II) ion. It was prepared by immobilizing the adduct of diethylenetriamine and thiourea on silica gel. The effects of solution acidity, preconcentration time, sample flow rate and volume were optimized. The results show that Hg(II) can be selectively extracted from acidic solutions and in presence of common other metal ions. The adsorbent is stable, can be reused more than 10 times, and the maximum adsorption capacity is 23 mg g?1. Hg(II) was quantified by inductively coupled plasma optical emission spectrometry. The method has a detection limit of 23 ng L?1, and the relative standard deviation is <2 %. The procedure was validated by analyzing two standard materials (river sediment and hair powder), and was successfully applied to the preconcentration of Hg(II) in real samples.
Figure
A solid phase extractor was firstly prepared by immobilizing DETA-TU (equimolar adduct of diethylenetriamine and thiourea) on the silica gel, which was applied to selectively separate/preconcentrate trace Hg(II) from real samples  相似文献   

7.
We have developed a simple method for the highly selective colorimetric detection of dissolved mercury(II) ions via direct formation of gold nanoparticles (AuNPs). The dithia-diaza ligand 2-[3-(2-amino-ethylsulfanyl)-propylsulfanyl]-ethylamine (AEPE) was used as a stabilizer to protect AuNPs from aggregation and to impart highly selective recognition of Hg(II) ion over other metal ions. A solution of Au(III) ion is directly reduced by sodium borohydride in the presence of AEPE and the detergent Triton X-100. This results in the formation of AEPE-AuNPs and a red coloration of the solution. On the other hand, in the presence of Hg(II), the solution turns blue within a few seconds after the addition of borohydride. This can be detected spectrophotometrically or even visually. The method was successfully applied to quantify Hg(II) levels in water sample, with a minimum detectable concentration as low as 35?nM.
Figure
A rapid colorimetric method for Hg2+ detection based on the reduction of Au3+ to gold nanoparticles in the presence of dithia-diaza (2S-2N) ligand was developed. The colors of the solutions without and with Hg2+ were red and blue, respectively.  相似文献   

8.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

9.
We have developed a cloud point extraction procedure based on room temperature ionic liquid for the preconcentration and determination of mercury in water samples. Mercury ion was quantitatively extracted with tetraethyleneglycol-bis(3- methylimidazolium) diiodide in the form of its complex with 5,10,15,20-tetra-(4-phenoxyphenyl)porphyrin. The complex was back extracted from the room temperature ionic liquid phase into an aqueous media prior to its analysis by spectrofluorimetry. An overall preconcentration factor of 45 was accomplished upon preconcentration of a 20?mL sample. The limit of detection obtained under the optimal conditions is 0.08?μg mL?1, and the relative standard deviation for 10 replicate assays (at 0.5?g mL?1 of Hg) was 2.4%. The method was successfully applied to the determination of mercury in tap, river and mineral water samples.
Figure
In this work, a novel and sensitive analytical methodology for mercury preconcentration and determination in different water samples using ionic liquid was developed. The use of room temperature ionic liquid‘s biphasic systems as an alternative to conventional solvents offers several advantages including safety and high capacity to extract Hg(II) and other elements with high recoveries. ?onic liquid in combination with porphyrin complexing reagent was successfully applied in this study for the extraction and preconcentration of Hg(II). Likewise, a fast and quantitative back extraction of the analyte from room temperature ionic liquid phase into aqueous phase was possible, allowing its further determination by spectrofluorimetry. The preconcentration method allowed mercury determination in tap, river and mineral water samples at trace levels with high accuracy and reproducibility.  相似文献   

10.
A novel type of porous metal-organic framework (MOF) was obtained from thiol-modified silica nanoparticles and the copper(II) complex of trimesic acid. It is shown that this nanocomposite is well suitable for the preconcentration of Hg(II) ions. The nanocomposite was characterized by Fourier transfer infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray diffraction and scanning electron microscopy. The effects of pH value, sorption time, elution time, the volume and concentration of eluent were investigated. Equilibrium isotherms were studied, and four models were applied to analyze the equilibrium adsorption data. The results revealed that the adsorption process obeyed the Langmuir model. The maximum monolayer capacity and the Langmuir constant are 210 mg g?1 and 0.273 L mg?1, respectively. The new MOF-based nanocomposite is shown to be an efficient and selective sorbent for Hg(II). Under the optimal conditions, the limit of detection is 20 pg mL?1 of Hg(II), and the relative standard deviation is <7.2 % (for n?=?3). The sorbent was successfully applied to the rapid extraction of Hg(II) ions from fish, sediment, and water samples.
Figure
Schematic illustration of Hg(II) sorption onto SH@SiO2/MOF nanocomposite.  相似文献   

11.
Feng Pan  Jie Mao  Qiang Chen  Pengbo Wang 《Mikrochimica acta》2013,180(15-16):1471-1477
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.
Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results.  相似文献   

12.
Fluorescent gold nanoclusters (AuNCs) were synthesized using a drug target bacterial enoyl-ACP reductase (FabI) as a template. The physical and chemical properties of the AuNCs were studied by UV-vis absorption, fluorescence, X-ray photoelectron spectroscopy and TEM. The AuNCs-FabI conjugate was prepared by in situ reduction of tetrachloroaurate in the presence of FabI. The conjugated particles were loaded onto nylon membranes by taking advantage of the electrostatic interaction between the negatively charged AuNCs@FabI and the nylon film which is positively charged at pH 7.4. This results in the formation of a test stripe with sensor spots that can be used to detect Hg(II) ion in the 1 nM to 10 μM concentration range. The test stripes are simple, convenient, selective, sensitive, and can be quickly read out with bare eyes after illumination with a UV lamp.
Figure
Fluorescent gold nanoclusters (AuNCs) were synthesized using a drug target bacterial enoyl-ACP reductase (FabI) as a template. The synthesized AuNCs@FabI were loaded onto nylon membranes forming a paper-based sensor that can be used to detect Hg(II) ion in the 1 nM to 10 μM concentration range. The test stripes are simple, convenient, selective, sensitive, and can be quickly read out with bare eyes after illumination with a UV lamp.  相似文献   

13.
We report on a simple and reliable method for the determination of trace cadmium ion using a glassy carbon electrode (GCE) modified with cupferron, ß-naphthol and MWCNTs. The operational mechanism consists of several steps: first, the ligand cupferron on the modified electrode reacts with Cd2+ ion to form a chelate compound. Next, this chelate is adsorbed by the carrier ß-naphthol following the principle of organic co-precipitation. Finally, the coprecipitated complex is detected by the GCE. This scheme is interesting because it combines preconcentration and electrochemical detection. Two linear responses are obtained, one in the concentration range of 5.0?×?10?11 to 1.6?×?10?8 M, the other in the range of 1.6?×?10?8 to 1.42?×?10?6 M, with a lower detection limit of 1.6?×?10?11 M. This modified GCE does not suffer from significant interferences by Cu(II), Hg(II), Ag(I), Fe(III), Pb(II), Cr(III), Zn(II), NO3?, Cl?, SO 4 2? ions and EDTA. The response of the electrode remained constant for at least 3 weeks of successive operation. The method presented here provides a new way for the simultaneous separation, enrichment, and electrochemical detection of trace cadmium ion.
Figure
Separation, enrichment and electrochemical detection of trace cadmium ion were simultaneously and synchronously carried through on the electrode modified with cupferron, ß-naphthol, and multiwalled carbon nanotubes. It shows higher selectivity, excellent sensitivity and good stability.  相似文献   

14.
We report on a fluorescence resonance energy transfer (FRET)-based ratiometric sensor for the detection of Hg(II) ion. First, silica nanoparticles were labeled with a hydrophobic fluorescent nitrobenzoxadiazolyl dye which acts as a FRET donor. A spirolactam rhodamine was then covalently linked to the surface of the silica particles. Exposure of the nanoparticles to Hg(II) in water induced a ring-opening reaction of the spirolactam rhodamine moieties, leading to the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Hg(II) was accomplished by ratioing the fluorescence intensities at 520 nm and 578 nm. The average decay time for the donor decreases from 9.09 ns to 7.37 ns upon addition of Hg(II), which proves the occurrence of a FRET process. The detection limit of the assay is 100 nM (ca. 20 ppb). The sensor also exhibits a large Stokes shift (>150 nm) which can eliminate backscattering effects of excitation light.
Figure
A FRET-based ratiometric sensing system for Hg in water is built within the core/shell silica nanoparticle. This architecture ensures the control over the location of donor and acceptor, affording the system preferable for ratiometric sensing.  相似文献   

15.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   

16.
Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20?ng?mL-1 and 2?ng?mL-1 of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH?4.0 ± 0.05.
Figure
Imidazole functionalized polyaniline modified glassy carbon and carbon paste electrodes were used for lead ion detection by using CV and DPASV techniques. The lower detection limit observed with GCE and CPE are 20?ng mL-1 and 2?ng mL-1.  相似文献   

17.
We report on a novel tin-bismuth alloy electrode (SnBiE) for the determination of trace concentrations of zinc ions by square-wave anodic stripping voltammetry without deoxygenation. The SnBiE has the advantages of easy fabrication and low cost, and does not require a pre-treatment (in terms of modification) prior to measurements. A study on the potential window of the electrode revealed a high hydrogen overvoltage though a limited anodic range due to the oxidation of tin. The effects of pH value, accumulation potential, and accumulation time were optimized with respect to the determination of trace zinc(II) at pH 5.0. The response of the SnBiE to zinc(II) ion is linear in the 0.5–25?μM concentration range. The detection limit is 50?nM (after 60?s of accumulation). The SnBiE was applied to the determination of zinc(II) in wines and honeys, and the results were consistent with those of AAS.
Figure
A novel tin-bismuth alloy electrode was used for determination of trace Zn2+ in wines and honeys by square-wave anodic stripping voltammetry without any deoxygenating.  相似文献   

18.
We have developed an electrochemical sensor for highly selective and sensitive determination of Hg(II). It is based on the specific binding of 5-methyl-2-thiouracil (MTU) and Hg(II) to the surface of an indium tin oxide (ITO) electrode modified with a composite made from graphene oxide (GO) and gold nanoparticles (AuNPs). This leads to a largely enhanced differential pulse voltammetric response for Hg(II). Following optimization of the method, a good linear relationship (R?=?0.9920) is found between peak current and the concentration of Hg(II) in the 5.0–110.0 nM range. The limit of detection (LOD) is 0.78 nM at a signal-to-noise ratio of 3. A study on the interference by several metal ions revealed no interferences. The feasibility of this method was demonstrated by the analyses of real water samples. The LODs are 6.9, 1.0 and 1.9 nM for tap water, bottled water and lake water samples, respectively, and recoveries for the water samples spiked with 8.0, 50.0 and 100.0 nM were 83.9–96.8 %, with relative standard deviations ranging from 3.3 % to 5.2 %.
Figure
Schematic illustration of the enhanced electrochemical detection strategy for Hg(II) via specific interaction of 5-methyl-2-thiouracil (MTU) and Hg(II) based on graphene oxide and gold nanoparticles (GO-AuNPs) composites modified on the indium tin oxide (ITO) electrode.  相似文献   

19.
We report on the synthesis of Fe3O4-functionalized metal-organic framework (m-MOF) composite from Zn(II) and 2-aminoterephthalic acid by a hydrothermal reaction. The magnetic composite is iso-reticular and was characterized by FTIR, X-ray diffraction, SEM, magnetization, and TGA. The m-MOF was then applied as a sorbent for the solid-phase extraction of trace levels of copper ions with subsequent quantification by electrothermal AAS. The amount of sorbent applied, the pH of the sample solution, extraction time, eluent concentration and volume, and desorption time were optimized. Under the optimum conditions, the enrichment factor is 50, and the sorption capacity of the material is 2.4 mg g?1. The calibration plot is linear over the 0.1 to 10 μg L?1 Cu(II) concentration range, the relative standard deviation is 0.4 % at a level of 0.1 μg L?1 (for n?=?10), and the detection limit is as low as 73 ng L?1. We consider this magnetic MOF composite to be a promising and highly efficient material for the preconcentration of metal ions.
Figure
Magnetic metal-organic frameworks was synthesized and used as a new sorbent for lead adsorption with detection by electrothermal atomic absorption spectrometry.  相似文献   

20.
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). In the first step, the cationic Pb(II) complex of 2,2-bipyridyl is formed which, in a second step, is adsorbed on ox-MWCNTs mainly due to electrostatic and van der Waals interactions. The Pb(II) ions were then eluted with dilute nitric acid and quantified by FAAS. The effects of pH value, mass of sorbent, concentration of 2,2-bipyridyl, stirring time, of type, concentration and volume of eluent, of eluent flow rate and sample volume were examined. Most other ions do not affect the recovery of Pb(II). The limits of detection are 240 and 60 ng L?1 for sample volumes of 100 and 400 mL, respectively. The recovery and relative standard deviation are >95 % and 2.4 %, respectively. Other figures of merit include a preconcentration factor of 160 and a maximum adsorption capacity of 165 mg g?1. The method was successfully applied to the determination of Pb(II) in spiked tap water samples. The accuracy of the method was verified by correctly analyzing a certified reference material (NCS ZC85006; lead in tomatoes).
Figure
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). Most other ions do not affect the recovery of Pb(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号