首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
mRNA vaccines have proven to be more stable, effective, and specific than protein/peptide‐based vaccines in stimulating both humoral and cellular immune response. However, mRNA's fast degradation rate and low‐transfection efficiency in vivo impede its potential in vaccination. Recent research in gene delivery has focused on nonviral vaccine carriers and either implantable or injectable delivery systems to improve transgene expression in vivo. Here, an injectable chitosan‐alginate gel scaffold for the local delivery of mRNA vaccines is reported. Gel scaffold biodegradation rates and biocompatibility are quantified. Scaffold‐mediated mRNA in vivo transgene expression as well as ovalbumin antigen specific cellular and humoral immune responses are evaluated in vivo. Luciferase reporter protein expression resulting from mRNA lipoplex‐loaded gel scaffolds is five times higher than systemic injection. Compared to systemic injections of naked mRNA or mRNA:lipoplexes, elevated levels of T cell proliferation and IFN‐γ secretion are seen with in vivo scaffold‐mediated mRNA lipoplex delivery. Furthermore, a humoral response (ovalbumin antigen specific IgG levels) is observed as early as week 1 for scaffold‐mediated mRNA lipoplex delivery, while protein‐based immunization did not elicit IgG production until 2 weeks post‐injection. Results suggest that injectable scaffold mRNA vaccine delivery maybe a viable alternative to traditional nucleic acid immunization methods.  相似文献   

2.
The tumor‐associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti‐MUC1 immunodominant responses. Herein, we prepared synthetic anti‐MUC1 vaccines in which the hydrophilic MUC1 antigen was N‐terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam‐MUC1 or Pam2‐MUC1). These amphiphilic lipid‐tailed MUC1 antigens were self‐assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid‐conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti‐MUC1 IgG antibody titers induced by the Pam2‐MUC1 vaccine were more than 30‐ and 190‐fold higher than those induced by the Pam‐MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3CSK4 as an adjuvant also induced conjugated lipid‐dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3CSK4 adjuvant. Therefore, the non‐covalent assembly of the amphiphilic lipo‐MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti‐MUC1 cancer vaccines.  相似文献   

3.
For antitumor vaccines both the selected tumor‐associated antigen, as well as the mode of its presentation, affect the immune response. According to the principle of multiple antigen presentation, a tumor‐associated MUC1 glycopeptide combined with the immunostimulating T‐cell epitope P2 from tetanus toxoid was coupled to a multi‐functionalized hyperbranched polyglycerol by “click chemistry”. This globular polymeric carrier has a flexible dendrimer‐like structure, which allows optimal antigen presentation to the immune system. The resulting fully synthetic vaccine induced strong immune responses in mice and IgG antibodies recognizing human breast‐cancer cells.  相似文献   

4.
Self‐assembly of peptide‐based building units into supramolecular nanostructures creates an important class of biomaterials with robust mechanical properties and improved resistance to premature degradation. Yet, upon aggregation, substrate–enzyme interactions are often compromised because of the limited access of macromolecular proteins to the peptide substrate, leading to either a reduction or loss of responsiveness to biomolecular cues. Reported here is the supramolecular design of unsymmetric reverse bolaamphiphiles (RBA) capable of exposing a matrix metalloproteinase (MMP) substrate on the surface of their filamentous assemblies. Upon addition of MMP‐2, these filaments rapidly break into fragments prior to reassembling into spherical micelles. Using 3D cell culture, it is shown that drug release is commensurate with cell density, revealing more effective cell killing when more cancer cells are present. This design platform could serve as a cell‐responsive therapeutic depot for local chemotherapy.  相似文献   

5.
Recently, several immunotherapeutic strategies are extensively studied and entered clinical investigation, suggesting their potential to lead a new generation of cancer therapy. Particularly, a cancer vaccine that combines tumor-associated antigens and immune adjuvants with a nanocarrier holds huge promise for inducing specific antitumor immune responses. Hyperbranched polymers, such as dendrimers and branched polyethylenimine (PEI) possessing abundant positively charged amine groups and inherent proton sponge effect are ideal carriers of antigens. Much effort is devoted to design dendrimer/branched PEI-based cancer vaccines. Herein, the recent advances in the design of dendrimer/branched PEI-based cancer vaccines for immunotherapy are reviewed. The future perspectives with regard to the development of dendrimer/branched PEI-based cancer vaccines are also briefly discussed.  相似文献   

6.
A shot in the arm for cancer treatment: Two MUC1 tetanus toxoid vaccines were synthesized and induced a strong immune response in mice. The antibodies elicited by the vaccines show a high selectivity for the tumor cells in mammary carcinoma tissues and also distinguish between tumor tissues at different stages.  相似文献   

7.
Vaccines continue to be the most cost effective method to reduce the burden of disease in both human and animal health. However, there is a need to improve the duration of immunity following vaccination, since maintenance of protective levels of antibody in serum or the ability to rapidly respond upon re-exposure (memory) is critical if vaccines are to provide long-term protective immunity. The purpose of this experiment was to test the duration of antibody responses and the ability to generate anamnestic responses following a single immunization with a DNA vaccine encoding hepatitis B surface antigen (HBsAg) delivered by a variety of routes. Sheep immunized with the conventional HBsAg subunit vaccine (Engerix-B) as well as sheep immunized with a HBsAg DNA vaccine, combined with electroporation, generated significant antibody responses that were sustained for 25 weeks after primary immunization. At 25 weeks, all experimental groups received a secondary immunization with the HBsAg subunit vaccine. Sheep that received a primary DNA immunization, in combination with electroporation, mounted an anamnestic response similar to the cohort immunized with the HBsAg subunit vaccine. In contrast, animals immunized with DNA vaccines administered without electroporation elicited no detectable memory response. The presence of immune memory was significantly correlated with the induction of a prolonged primary immune response. Thus, a single DNA vaccination, in combination with electroporation, approached the efficacy of the commercial subunit vaccine in the maintenance of long-term protective serum antibody titres and immune memory.  相似文献   

8.
Therapeutic cancer vaccines based on the abnormal glycans expressed on cancer cells, such as the globo H antigen, have witnessed great progress in recent years. For example, the keyhole limpet hemocyanin (KLH) conjugate of globo H has been on clinical trials as a cancer vaccine. However, such vaccines have intrinsic problems, such as inconsistence in eliciting T cell-mediated immunity in cancer patients and difficult quality control. To address the issue, a structurally defined fully synthetic glycoconjugate vaccine composed of globo H and monophosphoryl lipid A (MPLA) was developed. The new vaccine was shown to elicit robust IgG1 antibody responses and T cell-dependent immunity, which is desired for anticancer vaccines, and induce significantly faster and stronger immune responses than the globo H–KLH conjugate. Moreover, it was self-adjuvanting, namely, inducing immune responses without the use of an external adjuvant, thus MPLA was not only a vaccine carrier but also a build-in adjuvant. It was also found that antibodies induced by the new vaccine could selectively bind to and mediate strong complement-dependent cytotoxicity to globo H-expressing MCF-7 cancer cell. All of the results have demonstrated that the globo H–MPLA conjugate is a better cancer vaccine than the globo H–KLH conjugate under experimental conditions and is worth further investigation and development.  相似文献   

9.
Accurate determination of concentration of immunoglobulin (IgG) to tetanus toxoid is important in order to evaluate the immunogenicity of tetanus toxoid vaccines, immune competence in individual patients and to measure the prevalence of immunity in populations. Surface modified polyacrylonitrile (PAN) fibers were evaluated as a matrix to develop highly sensitive method for the detection of anti-tetanus antibody in a sandwich ELISA format. In the proposed method tetanus toxoid immobilized on modified PAN fibers was used to detect anti-tetanus antibody (raised in horse hence represented as horse anti-tetanus toxoid or HAT-Ab) with horse raddish peroxidase enzyme conjugated with Rabbit anti-Horse IgG (RAH-HRP) as the label within 2.5 h. A sigmoidal pattern for the detection of different concentration of antibody ranging from 1.0 to 0.0001 IU mL−1 was validated. The immunoassay recorded a very high sensitivity as concentration as low as 0.0005 IU mL−1 of HAT-Ab was detected. The intra- and inter-assay precision for 3 parallel measurements of 0.01 and for 0.001 IU mL−1 of antibody varied from 5.4% to 11% and 5.7% to 20% respectively. PAN fibers were also used to qualitatively access the presence of different level of anti-tetanus antibody spiked in human blood. Seroepidemiological studies to measure the immunity against tetanus were conducted with twenty-five human beings belonging to various age groups using modified PAN-ELISA. The sensitivity, specificity and the reproducibility of the developed immunoassay indicate the potential application of modified PAN fibers in the field of immunodiagnostics.  相似文献   

10.
With increased clinical use of antibodies, long‐term delivery strategies are needed to decrease injection frequency and improve health outcomes. A three‐component drug‐delivery system was developed for competitive affinity release of a streptavidin–antibody conjugate from agarose–desthiobiotin hydrogels via controlled dissolution of sparingly soluble biotin derivatives. The antibody conjugate was localized in the hydrogel through streptavidin–desthiobiotin complexation. Dissolution of sparingly soluble biotin derivatives disrupts streptavidin–desthiobiotin complexation for controlled release of the antibody conjugate. Release was tuned by altering the total biotin derivative concentration without further hydrogel or antibody modification. First‐order tunable release of bioactive Avastin, a therapeutic anti‐VEGF antibody, was demonstrated from a non‐cytotoxic system for over 100 days.  相似文献   

11.
小分子抗原人工合成进展   总被引:5,自引:0,他引:5  
王建华  张冲 《应用化学》2011,28(4):367-375
小分子免疫分析技术的应用日渐广泛,合成稳定的、具有良好免疫原性的人工抗原是制备单克隆抗体和建立免疫分析方法的前提和关键。 本文对国内外半抗原的设计与合成方法、载体的选择、半抗原与载体的耦联方法等进行了综述,并对小分子抗原人工合成中相关的问题进行了讨论。  相似文献   

12.
Checkpoint blockade immunotherapy (CBI) awakes a host innate immune system and reactivates cytotoxic T cells to elicit durable response in some cancer patients. Now, a cationic nanoscale metal–organic framework, W‐TBP, is used to facilitate tumor antigen presentation by enabling immunogenic photodynamic therapy (PDT) and promoting the maturation of dendritic cells (DCs). Comprised of dinuclear WVI secondary building units and photosensitizing 5,10,15,20‐tetra(p‐benzoato)porphyrin (TBP) ligands, cationic W‐TBP mediates PDT to release tumor associated antigens and delivers immunostimulatory CpG oligodeoxynucleotides to DCs. The enhanced antigen presentation synergizes with CBI to expand and reinvigorate cytotoxic T cells, leading to superb anticancer efficacy and robust abscopal effects with >97 % tumor regression in a bilateral breast cancer model.  相似文献   

13.
Tumor‐associated carbohydrate antigens (TACAs) are key components of cancer vaccines. A variety of vaccines based on native TACAs such as α‐Tn have shown immunogenicity and protection in preclinical animal studies, however, their weak immunogenicity, low in vivo instability, and poor bioavailability, have discouraged their further evaluations in clinical studies. A new improved vaccine prototype is reported. It is composed of four clustered Tn‐antigen mimetics and a immunogenic peptide epitope that are conjugated to a cyclopeptide carrier. The immunization of mice with this vaccine 1) was safe, 2) induced a strong and long‐lasting Tn‐specific response with IgM/IgG antibodies able to recognize native carbohydrate antigens; 3) produced high titers of IgG1, IgG2a, and IgG3 antibodies; and 4) produced a significant antibody‐dependent regression of tumors and conferred protection. Altogether, these findings pave the way for the clinical development of safe and effective therapeutic vaccines against Tn‐expressing cancers.  相似文献   

14.
Biodegradable material poly(D, L ‐lactic‐co‐glycolic) acid (PLGA) plays an important role in drug‐sustained release systems. Here, we describe a glycerol modified solid‐in‐oil‐in‐water (m‐S/O/W) emulsion method for PLGA microspheres, in order to encapsulate proteins in PLGA by utilizing dextran glassy particles to protect the proteins from denaturing, unfolding, and aggregation during preparation and new external water phase to prevent the inner dextran glassy particles from leaking into the external water phase. External water phase containing 20, 40, 60, 80% glycerol showed that proteins released faster and more completely with increased glycerol content. According to their varied release profiles, microspheres of different formulations could be used to encapsulate vaccines or for delivering proteins over long‐term. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Dendritic cells (DCs) based cancer immunotherapy is largely dependent on adequate antigen delivery and efficient induction of DCs maturation to produce sufficient antigen presentation and ultimately lead to substantial activation of tumor-specific CD8+ T cells. Carbon nanotubes (CNTs) have attracted great attention in biomedicine because of their unique physicochemical properties. In order to effectively deliver tumor antigens to DCs and trigger a strong anti-tumor immune response, herein, a specific DCs target delivery system was assembled by using multi-walled carbon nanotubes modified with mannose which can specifically bind to the mannose receptor on DCs membrane. Ovalbumin (OVA) as a model antigen, could be adsorbed on the surface of mannose modified multi-walled carbon nanotubes (Man-MWCNTs) with a large drug loading content. This nanotube-antigen complex showed low cytotoxicity to DCs and was efficiently engulfed by DCs to induce DCs maturation and cytokine release in vitro, indicating that it could be a potent antigen-adjuvant nanovector of efficient antigen delivery for therapeutic purpose.  相似文献   

16.
The effects of several conditions for the immunization of mice was studied using an aliquot of a viomycin (VM) protein conjugate as the common primary or booster antigen. Responses of the mice were assessed by measuring mouse serum levels of total immunoglobulin G (IgG) and anti-VM antibody responses using the newly improved two assay methods. The choice of route was found to be a very important factor in immunization and intraperitoneal injection was the most optimal among the four routes studied. The effect of the concentration of Mycobacteria in Freund's complete adjuvant (FCA) was also studied, and it was found that a diluted FCA was more effective than a commercial FCA. The effect of the controlled release of the antigen was studied and three important phenomena were observed: The mice immunized by the mini-osmotic pump-aided controlled release of the antigen responded with similar small amounts of both total IgG and anti-VM antibody regardless of the presence or absence of FCA in the antigen; emulsifying the antigen with FCA was a very important condition for the effective elicitation of the specific antibody; a mixture of antigen and FCA without emulsifying produced little specific antibody and a large amount of total IgG. The more effectively immunized mice responded with a larger decrease in body weight soon after the primary injection.  相似文献   

17.
Vaccine adjuvants have been widely used to enhance the immunogenicity of the antigens and elicit long-lasting immune response. However, only few vaccine adjuvants have been approved by the FDA for human use so far. Therefore, there is still an urgent need to develop novel adjuvants for the potential applications in clinical trials. Herein, non-nucleotide small molecule STING agonist di ABZI was employed to construct glycopeptide antigen based vaccines for the first time. Immunological evaluation indicated di ABZI not only enhanced the production of antibodies and T cell immune responses, but also inhibited tumor growth in tumor-bearing mice in glycopeptide-based subunit vaccines. These results indicated that di-ABZI demonstrates a high potential as adjuvant for the development of cancer vaccines.  相似文献   

18.
《Electrophoresis》2017,38(13-14):1780-1787
An enzyme and antibody dual labeled gold nanoparticles enhancing chemiluminescence strategy was developed for highly sensitive CE immunoassay (IA) of prostate‐specific antigen (PSA). In this work, gold nanoparticles were labeled with horseradish peroxidase and antiprostate specific antigen‐antibody, and used as the marker (Ab*). After PSA (antigen, Ag) was added into the system, a noncompetitive immune reaction was happen between Ab* and Ag to form an immune complex (Ag–Ab*). Subsequently, the obtained Ag–Ab* and unreacted Ab* were separated by CE, and the chemiluminescence intensity of Ag‐Ab* was used to estimate PSA concentration. The calibration curve showed a good linearity in the range of 0.25–10 ng/mL. Based on a S/N of 3, the detection limit for PAS was estimated to be 0.092 ng/mL. Proposed CE method was applied for PSA quantification in human serum samples from healthy volunteers and patients with prostate cancer. The obtained results demonstrated that the proposed CE method may serve as an alternative tool for clinical analysis of PSA.  相似文献   

19.
The induction of antigen‐specific adaptive immunity exclusively occurs in lymphoid organs. As a consequence, the efficacy by which vaccines reach these tissues strongly affects the efficacy of the vaccine. Here, we report the design of polymer hydrogel nanoparticles that efficiently target multiple immune cell subsets in the draining lymph nodes. Nanoparticles are fabricated by infiltrating mesoporous silica particles (ca. 200 nm) with poly(methacrylic acid) followed by disulfide‐based crosslinking and template removal. PEGylation of these nanoparticles does not affect their cellular association in vitro, but dramatically improves their lymphatic drainage in vivo. The functional relevance of these observations is further illustrated by the increased priming of antigen‐specific T cells. Our findings highlight the potential of engineered hydrogel nanoparticles for the lymphatic delivery of antigens and immune‐modulating compounds.  相似文献   

20.
Interactive materials that can respond to a trigger by changing their morphology, but that can also gradually degrade into a fully soluble state, are attractive building blocks for the next generation of biomaterials. Herein, we design such transiently responsive polymers that exhibit UCST behaviour while gradually losing this property in response to a hydrolysis reaction in the polymer side chains. The polymers operate within a physiologically relevant window in terms of temperature, pH, and ionic strength. Whereas such behaviour has been reported earlier for LCST systems, it is at present unexplored for UCST polymers. Furthermore, we demonstrate that, in contrast to LCST polymers, in aqueous medium the UCST polymer forms a coacervate phase below the UCST, which can entrap a hydrophilic model protein, as well as a hydrophobic dye. Because of their non‐toxicity, we also provide in vivo proof of concept of the use of this coacervate as a protein depot, in view of sustained‐release applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号