首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the bulk oligomerization of 1,3‐dioxolan‐2‐one (ethylene carbonate, EC) and 4‐methyl‐1,3‐dioxolan‐2‐one (propylene carbonate, PC) with the 2,2‐bis(4‐hydroxyphenyl)propane (bisphenol‐A, BPA)/base system (bases such as KHCO3, K2CO3, KOH, Li2CO3, and t‐BuOK) was investigated at elevated temperature, significant differences were observed. Oligomerization of EC initiated by BPA/base readily takes place, but the oligomerization of PC is inhibited. The very first propylene carbonate/propylene oxide unit readily forms a phenolic ether bond with the functional groups of BPA phenolate, but the addition of the second monomer unit is rather slow. The oligomerization of EC yields symmetrical oligo(ethylene oxide) side chains. According to IR studies the oligomeric chains formed from PC with BPA contain not only ether but also carbonate bonds. The in situ step oligomerization of the BPA dipropoxylate was also identified by SEC, and a possible reaction mechanism is proposed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 545–550, 1999  相似文献   

2.
The effects of hydrogen in ethylene polymerization and oligomerization with different bis(imino)pyridyl iron(II) complexes immobilized on supports of type MgCl2/AlEtn(OEt)3–n have been investigated. Hydrogen has a significant activating effect on polymerization catalysts containing relatively bulky bis(imino)pyridyl ligands, but this is not the case in ethylene oligomerization with a catalyst containing relatively little steric bulk in the ligand. It was found that the presence of hydrogen in the latter system led to decreased activity and an overall increase rather than a decrease in product molecular weight, indicating deactivation of active species producing low molecular weight polymer and oligomer. Decreased formation of vinyl‐terminated oligomers in the presence of hydrogen can therefore contribute to the activating effect of hydrogen in ethylene polymerization with immobilized iron catalysts, if it is assumed that hydrogen activation is related to chain transfer after a 2,1‐insertion of a vinyl‐terminated oligomer into the growing polymer chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4054–4061, 2007  相似文献   

3.
Homogeneous tandem catalysis of the bis(diphenylphoshino)amine‐chromium oligomerization catalyst with the metallocenes Ph2C(Cp)(9‐Flu)ZrCl2 and rac‐EtIn2ZrCl2, is discussed. GC, CRYSTAF, and 13C NMR analysis of the products obtained from reactions at constant temperatures show that during tandem catalysis, α‐olefins, mainly 1‐hexene and 1‐octene, are produced from ethylene by the oligomerization catalyst and subsequently built into the polyethylene chain. At 40 °C the Cr/PNP catalyst acts as a tetramerization catalyst while the polymerization catalyst activity is low. Copolymerization of ethylene and the in situ produced α‐olefins have also been carried out by increasing the temperature from 40 °C, where primarily oligomerization takes place, to above 100 °C, where polymerization becomes dominant. The melting temperature of the polymer is dependent on the catalyst and cocatalyst ratios as well as on the temperature gradient followed during the reaction, while the presence of the oligomerization catalyst reduces the activity of the polymerization catalyst. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6847–6856, 2006  相似文献   

4.
The quasi‐living copolymerization of ethylene with propylene was achieved by using N‐heterocyclic carbene (NHC) ligated vanadium complex ( V3 , VOCl3[1,3‐(2,6‐iPr2C6H3)2(NCH?)2C:]) due to the stabilization of active center by the introduction of bulky and electron rich NHC ligand with bulky isopropyl substituents at the ortho positions of the phenyl rings. The weight‐average molecular weight (Mw) of the resulting copolymer increases linearly with its weight in 20 min. The ultra‐high‐molecular‐weight (UHMW) ethylene‐propylene copolymer (Mw = 1612 kg mol?1) can be synthesized with V3 /Et3Al2Cl3 catalytic system. The novel complex V4′ (VCl3[1,3‐(2,4,6‐Me3C6H2)2(NCH?)2C:]·2THF) was constructed by the introduction of two coordinated tetrahydrofuran molecules and decrease in steric hindrance at the ortho positions of phenyl rings. The UHMW ethylene‐propylene copolymer (Mw = 1167 kg mol?1) can also be synthesized by using V4′ /Et3Al2Cl3 catalytic system. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 553–561  相似文献   

5.
A series of pyrrole‐containing diarylphosphine and diarylphosphine oxide ligands were prepared. The catalytic activity of the corresponding in‐situ‐generated chromium catalysts was investigated during selective ethylene oligomerization reactions. Variations in the ligand system were introduced by modifying the diarylphosphine and pyrrole moieties that affect the steric and electronic properties. Minor changes in the ligand structure and the composition of activators significantly changed the catalytic activity, selectivity toward linear alpha‐olefins (LAO) versus polyethylene (PE), and the distribution of oligomeric products. The presence of trifluoromethyl groups on the diphenyl rings in ligand 3 promoted oxidation to form the corresponding phosphine oxide structure, 3o , which dramatically enhanced the catalytic activity of ethylene trimerization. The in‐situ‐generated chromium complex based on 3o activated by DMAO (dry methylaluminoxane)/TIBA (triisobutylaluminum) was used to achieve activity of about 1250 g (mmol of Cr)−1 h−1 with 98.5 mol % 1‐hexene, along with a negligible amount of PE side product. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 444–450  相似文献   

6.
This paper reports an environmentally friendly and highly efficient synthesis of organic semiconductor materials via a Pd/N‐heterocyclic carbene (NHC)‐catalyzed Suzuki reaction in aqueous ethanol with high isolated yields (86–98%). Firstly, four glucopyranoside‐substituted NHC precursors with poly(ethylene glycol) (PEG) chains were synthesized and characterized. The NHC precursor with the longest PEG chain (n = 16) was found to be the most efficient ligand in the reactions of a wide range of aryl halides and arylboronic acids. The best catalyst system obtained in this work could be recycled five times without significant loss of catalytic activity.l Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Metal‐free ring‐opening oligomerization of glycidyl phenyl ether (GPE) initiated with tetra‐n‐butylammonium fluoride (n‐Bu4NF) (5.0 mol %) was performed in the presence of poly(ethylene glycol) monomethyl ether (PEGM) (5.0, 10, 20 mol %) as a chain transfer agent, by which the resulting polymers having narrow molecular weight distribution (Mw/Mn < 1.2) were obtained in 80–84% yield. Solubility of the obtained polymers in water increased with the increase of amount of PEGM, owing to an increase of number of PEGM‐block‐oligo(GPE) molecules compared to that of oligo(GPE) molecules having FCH2– group at the initiating end as well as a decrease in degree of oligomerization of oligo(GPE). The PEGM‐block‐oligo(GPE) was isolated by filtration of the polymer aqueous solution, whose number‐average molecular weights determined by NMR spectroscopic analysis were almost consistent to the theoretical values. The PEGM‐block‐oligo(GPE) formed micelles in aqueous media, whose average particle diameter was 58 and 140 nm for the copolymers having a composition of PEGM:GPE = 62:38 and 53:47, respectively. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4451–4458  相似文献   

8.
We report the complete 13C NMR characterization of a series of ethylene–propylene–1‐hexene terpolymers obtained with the metallocenic system rac‐ethylene bis‐indenyl zirconium dichloride, with different comonomer ratios. A detailed study of 13C NMR chemical shifts, triad sequence distributions, monomer‐average sequence lengths, and reactivity ratios for these terpolymers is presented. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2474–2482, 2004  相似文献   

9.
A series of novel bridged multi‐chelated non‐metallocene catalysts is synthesized by the treatment of N,N‐imidazole, N,N‐dimethylimidazole, and N,N‐benzimidazole with n‐BuLi, 2,6‐dimethylaniline, and MCl4 (M = Ti, Zr) in THF. These catalysts are used for copolymerization of ethylene with 1‐hexene after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M molar ratio, and pressure of monomer on ethylene copolymerization behaviors are investigated in detail. These results reveal that these catalysts are favorable for copolymerization of ethylene with 1‐hexene featured high catalytic activity and high comonomer incorporation. The copolymer is characterized by 13C NMR, WAXD, GPC, and DSC. The results confirm that the obtained copolymer features broad molecular weight distribution (MWD) about 33–35 and high 1‐hexene incorporation up to 9.2 mol %, melting temperature of the copolymer depends on the content of 1‐hexene incorporation within the copolymer chain and 1‐hexene unit in the copolymer chain isolates by ethylene units. The homopolymer of ethylene has broader MWD with 42–46. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 417–424, 2010  相似文献   

10.
An organocatalytic approach to controlled/living ring‐opening polymerizations (ROPs) of O‐carboxyanhydrides (OCAs) using N‐heterocyclic carbenes (NHCs) as nucleophilic catalysts has been investigated. NHCs with different structures were used in order to compare the catalytic performances in the ROP of OCA of l ‐lactic acid. 1H NMR, SEC, and MALDI‐TOF MS measurements of the products clearly indicated a controlled/living manner of the polymerization. The controlled/living nature was further confirmed by kinetic and chain extension experiments. Additionally, polylol initiators were used to produce α,ω‐dihydroxy telechelic, 3‐, and 4‐armed star‐shaped polymers. Moreover, star‐shaped diblock copolymer, bearing methyl and phenyl side groups, has been successfully synthesized with OCA/NHC system. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 . 52, 2306–2315  相似文献   

11.
A new oligomeric calix[4]arene‐thiacrown‐4 ( 5 ) was synthesized via a condensation reaction of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐bis‐(4‐aminobenzyloxy)‐calix[4]arene‐thiacrown‐4 ( 4 ) with adipoyl dichloride. In this oligomerization reaction only five/six calix[4]arene‐thiacrown‐4 units were linked in the oligomeric chain. The complexation studies of 5 were made with liquid–liquid‐ extraction and solid–liquid‐sorption procedures. For comparison, the extraction efficiencies of monomers 1 , 3 , and 4 to selected transition metals are reported. The selectivity of monomers 3 and 4 toward Cu2+, Hg2+, and Pb2+ was lost after oligomerization in the two‐phase extraction systems. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 186–193, 2004  相似文献   

12.
Ethylene‐styrene (or 4‐methylstyrene) co‐oligomerization using various bis(diphenylphoshino)amine ligands in combination with chromium is discussed. GC analysis of the reaction mixture shows that various phenyl‐hexene and phenyl‐octene isomers are formed either through cotrimerization or cotetramerization. It seems that the more bulky ligands display lower selectivity to co‐oligomerization and favor ethylene homo‐oligomerization. Subsequent copolymerization of the oligomerization reaction mixture using a metallocene polymerization catalyst results in a copolymer with a branched structure as indicated by Crystaf and 13C NMR analysis. Assignments of the 13C NMR spectrum are proposed from an APT NMR experiment combined with calculated NMR chemical shift data using additivity rules. An indication of the ability of the different co‐oligomerization products to copolymerize into the polyethylene chain could be established from these assignments. Unreacted styrene and the more bulky isomers, 3‐phenyl‐1‐hexene and 3‐phenyl‐1‐octene, are not readily incorporated while branches resulting from the other isomers present in the co‐oligomerization reaction mixture are detected in the NMR spectrum. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 1488–1501, 2008  相似文献   

13.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

14.
2‐Dicyclohexyl‐ and 2‐diphenylphosphinophenol, CCHH and PPHH , react with Ni(1,5‐COD)2 to form catalysts for polymerization of ethylene in or copolymerization with α‐olefins. The more P‐basic CCHH/Ni catalyst allows concentration‐dependent incorporation of olefins to give copolymers with isolated side groups and higher molecular weights, whereas the PPHH/Ni catalyst undergoes mainly stabilizing interactions with the olefins and leads to ethylene oligomers with no or marginal olefin incorporation. Pressure–time plots of the batch reactions show that the ethylene conversion is usually slower by catalysis with CCHH/Ni than by PPHH/Ni . The microstructure of the copolymers was determined by 13C NMR spectra, the number of side groups per main chain was estimated by 1H NMR analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 258–266, 2009  相似文献   

15.
Many studies have been reported on the 13C NMR characterization of ethylene–α‐olefin copolymers, but only a few have been reported on terpolymers. The incorporation of an α‐olefin into the polyethylene chain changes the structure and, consequently, the properties of the polymer obtained. Looking for new products, we obtained a series of ethylene–propylene–1‐decene terpolymers with the metallocenic system rac‐ethylene bisindenyl zirconium dichloride/methylaluminoxane. We performed a complete 13C NMR characterization of these terpolymers qualitatively and quantitatively. Here we present a detailed study of the 13C NMR chemical shifts, triad sequence distributions, monomer average sequence lengths, and reactivity ratios for these terpolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2531–2541, 2003  相似文献   

16.
This article is devoted to the study of electron‐beam‐induced degradation under argon atmosphere of an ethylene–propylene–diene monomer (EPDM, based on 5‐ethylidene 2‐norbornene) and an ethylene–propylene rubber (EPR) containing the same molar ratio of ethylene/propylene. The chemical structure modifications of polymeric samples were analyzed by ultraviolet–visible and IR spectroscopies. Crosslinking reactions were deduced by measuring the changes in gel fraction and the degree of swelling in n‐heptane. Irradiation of EPDM and EPR created trans‐vinylene, vinyl, vinylidene, and dienic‐type unsaturations. The radiochemical yields for unsaturation formations in EPDM and EPR were similar. Degradation also involved crosslinking and the production of molecular hydrogen. The comparison between EPDM and EPR showed that the diene (in which a double bond is consumed with a high radiochemical yield) contributes to the increase in rate and intermolecular bridges density. Mechanisms are proposed to account for the main routes of EPDM degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1239–1248, 2004  相似文献   

17.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

18.
A series of unsymmetrically substituted N‐heterocyclic carbene (NHC) precursors ( 1a , 1b , 1c , 1d , 1e ) were synthesized from the reaction of N‐phenylbenzimidazole with various alkyl halides. These compounds were used to synthesize NHC–silver(I) complexes ( 2a , 2b , 2c , 2d , 2e ). The five new 1‐phenyl‐3‐alkylbenzimidazolium salts ( 1a , 1b , 1c , 1d , 1e ) and their NHC–silver complexes ( 2a , 2b , 2c , 2d , 2e ) were characterized by the 1H NMR, 13C NMR and FT‐IR spectroscopic methods and elemental analysis techniques. Also, the two NHC–silver complexes 2b and 2c were characterized by single‐crystal X‐ray crystallography, which confirmed the linear C―Ag―Cl arrangements. The antibacterial activities of the NHC precursor and NHC–silver complexes were tested against three Gram‐positive bacterial strains (Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus) and three Gram‐negative bacterial strains (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using the microdilution broth method. The NHC–silver complexes showed higher antibacterial activity than the NHC precursors. In addition, silver complexes 2a , 2b , 2c , 2d showed high antibacterial activity against the Gram‐positive bacteria L. monocytogenes and S. aureus compared to the standard, tetracycline. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

20.
alt‐Copoly[1,9‐decaphenylpentasiloxanylene/1,3‐bis(ethylene)tetramethyldisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,5‐bis(ethylene)hexamethyltrisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,7‐bis(ethylene)octamethyltetrasiloxanylene], and alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,9‐bis(ethylene)decamethylpentasiloxanylene] were synthesized by Pt‐catalyzed hydrosilylation reactions of 1,9 divinyldecaphenylpentasiloxanes with a series of oligodimethylsiloxanes. The molecular weights of these copolymers were determined by gel permeation chromatography. Their glass‐transition temperatures (Tg's) were obtained by differential scanning calorimetry. The thermal stabilities of the copolymers were measured by thermogravimetric analysis. The structures of the copolymers were verified by 1H, 13C, and 29Si NMR as well as IR and UV spectroscopy. The copolymers displayed high thermal stabilities and a single Tg, indicating that phase separation between the two short blocks did not occur. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6146–6152, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号