首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rajesh N. Hegde 《Talanta》2009,79(2):361-368
A simple and rapid electrochemical method was developed for the determination of trace-level trazodone, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNT-modified glassy carbon electrode was constructed and the electrochemical behavior of trazodone was investigated in detail. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of trazodone in neutral solutions. It leads to a considerable improvement of the anodic peak current for trazodone, and allows the development of a highly sensitive voltammetric sensor for the determination of trazodone. Trazodone could effectively accumulate at this electrode and produce two anodic peaks at about 0.73 V and 1.00 V. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the trazodone determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 0.2-10 μM and 24 nM, respectively for trazodone. The proposed method was successfully applied to trazodone determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for detection of analyte in urine as a real sample.  相似文献   

2.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

3.
采用循环伏安法将纳米金电沉积于玻碳电极表面,制备了纳米金修饰玻碳电极(NG/GCE).在0.05 mol/L H2SO4溶液中,用循环伏安法研究了多贝斯在NG/GCE上的电化学行为.结果表明,NG/GCE对多贝斯的氧化还原反应有明显的电催化作用.建立了测定多贝斯的新方法,用方波伏安法测得多贝斯的氧化峰电流与其浓度在4....  相似文献   

4.
采用直接电化学沉积法制备出纳米金修饰玻碳电极,研究了其对亚硝酸根的电催化氧化作用。结果表明,亚硝酸根在该修饰电极上于0.8 V处出现了一个良好的氧化峰。在最优实验条件下,亚硝酸根的峰电流与其浓度在2×10-6~2×10-3mol/L范围内呈一定的线性关系,检出限为6.0×10-7(S/N=3),提出了用循环伏安法测定亚硝酸根的方法。纳米金修饰电极用于东莞自来水水样中亚硝酸根的测定,回收率在98.1%~101.4%之间。对比本方法,用分光光度法对东莞自来水样中亚硝酸根进行了测定,结果满意。  相似文献   

5.
A selective and simple biosensor was prepared by immobilizing chitosan/nickelnanoparticles/multi-walled carbon nanotubes biocomposite on the glassy carbon electrode surface for voltammetric quantification of neotame. The properties and morphology of the modified electrode surfaces were characterized by scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX). Electro oxidation of neotame on this modified surface was examined through cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. The biocomposite modified surface (Chi/NiNPs/MWCNTs/GCE) proposed in this study showed good electrocatalytic activity for neotame with an improved voltammetric peak current at 1.004 V, unlike the bare glassy carbon electrode (GCE) surface and several other modified surfaces. Under optimum conditions, Chi/NiNPs/MWCNTs/GCE gave linear SWV responses at the range of 2 μM ∼50 μM for neotame with 0.84 μM determination limit. This voltammetric sensor was successfully employed for the quantification of neotame on food samples and showed long-term stability, advanced voltammetric behavior, and good repeatability. Selective, accurate, and precise determination of neotame highlight the importance of this electrode in monitoring the control of food additives and ensures attract a great deal of attention.  相似文献   

6.
The present paper describes a sensitive electrochemical detection of amlodipine (AMLO) at the poly-l-methionine–gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode (PLM–GNPs/MWCNTs/GCE) by differential pulse voltammetry (DPV) technique at physiological pH 7.12. Cyclic voltammetry results demonstrate that the proposed electrode shows excellent electrocatalytic activity toward oxidation of AMLO. Kinetic parameters of the electrochemical reaction are calculated, and analytical variables such as MWCNT volumes, drug accumulation time, electropolymerization cycles and pH values are also optimized. Under optimal conditions, the linear range covering from 5 nM to 2.5 μM along with detection limit of 1 nM is obtained. Moreover, this method is successfully used to detect AMLO in pharmaceutical samples and biological fluids of a dosage received by the volunteer.  相似文献   

7.
运用循环伏安法与线性扫描伏安法研究了阿奇霉素在多壁碳纳米管修饰玻碳电极上的电化学行为,建立了一种直接测定阿奇霉素的电化学分析方法。结果表明,与裸玻碳电极相比,多壁碳纳米管修饰电极能显著提高阿奇霉素的氧化峰电流,阿奇霉素的电极过程完全不可逆,存在典型的吸附特性。在优化的实验条件下,氧化峰电流与阿奇霉素浓度在3.0×10-7~2.5×10-5 mol/L和2.5×10-5~5.0×10-4 mol/L范围内呈现良好的线性关系,检出限为1.0×10-7 mol/L。  相似文献   

8.
A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.
Graphical Abstract
A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.  相似文献   

9.
利用电化学方法在多壁碳纳米管修饰的玻碳电极表面聚合一层普鲁士蓝,制备普鲁士蓝/多壁碳纳米管修饰玻碳电极,运用循环伏安法研究了维生素C(vc)在该修饰电极上的电化学行为.该修饰电极对Vc显示出快速的电化学响应和较好的电催化活性,在pH为4.0的磷酸盐溶液中,Ve浓度与其氧化峰电流在8.0×10-4~1.0×10-2 mol/L范围内呈现良好的线性关系,相关系数为0.9993,检测限为6.4×10-5mol/L.该电极具有较好的稳定性和重现性.  相似文献   

10.
In this paper, a novel and convenient electrochemical sensor for detection of methimazole (MMI) by differential pulse voltammetry is presented. This sensor was fabricated by dripping well-dispersed MWCNTs onto glassy carbon electrode (GCE) surface, and then poly-l-Arg (P-L-Arg) film was deposited on the electrode. Finally, Cu nanoparticles (CuNPs) were electrochemically deposited on the resulting film by using cyclic voltammetry to prepare CuNPs-P-L-Arg/MWCNTs/GCE. The surface morphology of the electrodes has been studied by scanning electron microscopy. Studies reveal that the irreversible oxidation of MMI was highly facile on CuNPs-P-L-Arg/MWCNTs/GCE. The dynamic detection range of this sensor to MMI was 5.2–50 µM, with the detection limit of 2 µM. A new voltammetric method for determination of MMI was erected and shows good sensitivity and selectivity, very easy surface update and good stability. The analytical application of the modified electrode is demonstrated by determining MMI in biological fluids (serum).  相似文献   

11.
Shahrokhian S  Rastgar S 《The Analyst》2012,137(11):2706-2715
Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.  相似文献   

12.
A new rapid, convenient and sensitive electrochemical method is described for the determination of procaine in pharmaceutical preparations, based on the unique properties of a multi-wall carbon nanotube (MWNT) thin film. The electrochemical behavior of procaine at the MWNT film-coated glassy carbon electrode (GCE) was investigated in detail, showing that the MWNT-coated GCE exhibits electrocatalytic activity to the oxidation of procaine because of the significant peak current enhancement and the lowering of oxidation overpotential. Furthermore, the mechanism for the oxidation of procaine at the MWNT-coated GCE was also studied. Finally, various experimental parameters such as solution pH value, the amount of MWNT, accumulation conditions and scan rate were optimized for the determination of procaine, and a new method with detection limit of 2 x 10(-7) mol/L was developed for procaine determination. This newly proposed method was successfully demonstrated with procaine hydrochloride injection.  相似文献   

13.
制备了多壁碳纳米管修饰玻碳电极,研究了对乙酰氨基酚在多壁碳纳米管修饰电极上的循环伏安行为,并建立了测定对乙酰氨基酚含量的电化学分析方法。在pH为6.89的磷酸盐缓冲液中,多壁碳纳米管修饰电极对对乙酰氨基酚有明显的电催化作用,其氧化峰电流与对乙酰氨基酚浓度在1.0×10-6~1.0×10-4mol·L-1范围内呈良好的线性关系,检测限为2.0×10-7mol·L-1。  相似文献   

14.
In this study, a new strategy for the preparation of a modified glassy carbon electrode (GCE) based on a novel nano-sensing layer for the electrocatalytic oxidation of hydrazine was suggested. The suggested nano-sensing layer was prepared with the immobilisation of silver nanoparticles (AgNPs) on ordered mesoporous carbon. The morphology and properties of the prepared nanocomposite on the surface of GCE were characterised by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, X-ray powder diffraction and electrochemical impedance spectroscopy. The electrochemical response characteristics of the modified electrode towards the target analyte were investigated by cyclic voltammetry. Under optimal experimental conditions, the suggested modified GCE showed excellent catalytic activity towards the electro-oxidation of hydrazine (pH = 7.5) with a significant increase in anodic peak currents in comparison with the unmodified GCE. By differential pulse voltammetry and amperometric methods, the suggested sensor demonstrated wide dynamic concentration ranges of 0.08–33.8 µM and 0.01–128 µM with the detection limit (S/N = 3) of 0.027 and 0.003 µM for hydrazine, respectively. The suggested hydrazine sensor was successfully applied for the highly sensitive determination of hydrazine in different real samples with satisfactory results.  相似文献   

15.
张亚  杜芳艳  郑建斌 《应用化学》2014,31(7):860-864
制备了石墨烯修饰玻碳电极(GN/GCE)。 在0.05 mol/L H2SO4溶液中,用循环伏安法研究了多贝斯在GN/GCE上的电化学行为。 结果表明,GN/GCE对多贝斯的氧化还原反应有明显的电催化作用。 建立了测定多贝斯的新方法,用微分脉冲伏安法测得多贝斯的氧化峰电流与其浓度在2.0×10-9~1.2×10-6 mol/L范围内呈线性关系,检出限为1.0×10-9 mol/L(S/N=3)。 该法可用于胶囊中多贝斯的测定,修饰电极有较好的稳定性和重新性。  相似文献   

16.
A multi-walled carbon nanotube (MWCNT) film-modified glassy carbon electrode (GCE) was constructed for the determination of an antihistamine drug, cetirizine dihydrochloride (CTZH) using cyclic voltammetry (CV). Owing to the unique structure and extraordinary properties of MWCNT, the MWCNT film has shown an obvious electrocatalytic activity towards oxidation of CTZH, since it facilitates the electron transfer and significantly enhances the oxidation peak current of CTZH. All experimental parameters have been optimized. Under the optimum conditions, the oxidation peak current was linearly proportional to the concentration of CTZH in the range from 5.0×10(-7) to 1.0×10(-5)M. The detection limit was 7.07×10(-8)M with 180s accumulation. Finally, the proposed sensitive and simple electrochemical method was successfully applied to CTZH determination in pharmaceutical and urine samples.  相似文献   

17.
制备了金纳米粒子/碳纳米管修饰玻碳电极(AuNPs-CNTs/GCE),采用循环伏安法和线性扫描伏安法研究了4-壬基酚在修饰电极上的电化学行为,并建立了一种灵敏简便地检测4-壬基酚的电化学方法。优化了pH值、扫描速率、富集时间等测定参数,并计算出pH值与氧化峰电压、扫描速率与氧化峰电流之间的数量关系。在pH 10.0的BR缓冲溶液中,4-壬基酚在AuNPs-CNTs/GCE上出现灵敏的氧化峰,氧化电位为0.51 V。与裸玻碳电极(GCE)和单一碳纳米管修饰电极(CNTs/GCE)相比,AuNPs-CNTs/GCE明显提高了4-壬基酚的氧化电流。在优化实验条件下,4-壬基酚的浓度分别在0.05~4μmol/L和6~14μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为0.023μmol/L,对于实际样品测定的回收率为95%~104%。该修饰电极具有良好的重现性和稳定性,可用于环境样品中4-壬基酚的直接检测。  相似文献   

18.
A simple, sensitive and reliable electrochemical sensor has been developed based on CuO nanostructures modified glassy carbon electrode for simultaneous determination of hydroquinone (HQ) and ascorbic acid (AA). The CuO nano material was synthesized by aqueous chemical growth method using different sources of OH. The characterization of nano material was performed by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy and energy dispersive X‐ray spectroscopy. The glassy carbon electrode was modified by CuO nano material using drop cast method and studied by cyclic voltammetry. The CuO/GCE exhibited excellent electrocatalytic activity towards the oxidations of HQ and AA in borate buffer solution (pH 8.0) and the corresponding electrochemical signals have appeared as two well resolved oxidation peaks with significant peak potential differences of (0.21V vs. Ag/AgCl). Differential pulse voltammetry was used for simultaneous determination of HQ and AA using the CuO/GCE. At the optimum conditions, for simultaneous determination by synchronous change of the analyte concentrations, the linear response ranges were between 0.0003–0.355 mM for HQ and 0.0001–0.30 mM for AA respectively. Furthermore, CuO/GCE was successfully applied for the independent determination of AA in fruit juices as well as for the simultaneous determination of HQ and AA in cosmetic samples.  相似文献   

19.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

20.
通过电聚合法制备了聚对氨基苯磺酸(PABSA)修饰玻碳电极(GCE),采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了盐酸吡哆辛(VB6)在该修饰电极上的电化学行为。 结果表明,VB6在该修饰电极上的氧化电流显著增加,为裸电极上的7.5倍。 在pH值3.06.5的醋酸缓冲溶液中,VB6在PABSA/GCE上的电极反应为吸附控制的一电子两质子的不可逆氧化反应。 在优化条件下,使用DPV对VB6进行了定量检测,线性范围为0.04100 μmol/L,检出限为0.01 μmol/L,是目前所报道的电化学方法测定VB6的最低检出限,相对平均偏差为3.1%(n=8)。 采用本方法对维生素B6片中的VB6进行检测,回收率为106%~108%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号