首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A capillary zone electrophoresis method with HP-β-CD as chiral selector was established for the chiral separation of four stereoisomers of 1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-trihydroxy-propyl)-2-methoxy]-phenoxy-1,3-propandiol for the first time, which were isolated from Hydnocarpus annamensis. The effects of chiral selector type and concentration, buffer composition, pH and concentration, and cartridge temperature on the enantioseparation were investigated. A baseline separation of the four stereoisomers was achieved in less than 18 min under the optimized conditions: 40 mmol L−1 Borax–NaOH buffer (pH 10.02) in the presence of 100 mmol L−1 HP-β-CD at 15°C and 30 kV. The experimental results showed that the method by capillary zone electrophoresis for the separation of four stereoisomers is powerful, sensitive and fast, requires less amounts of reagents, and can be employed as a reliable alternative to other methods.  相似文献   

2.
A simple capillary electrophoresis partial-filling technique for the enantioseparation of pheniramine is presented. Phosphate buffer and hydroxypropyl-β-cyclodextrin (HP-β-CD) were used as the electrolyte and chiral selector, respectively. Several experimental parameters such as HP-β-CD concentration, HP-β-CD plug length, CE temperature and applied voltage were studied. Under the selected conditions, pheniramine enantiomers can be separated within less than 14 min. The assay was validated for linearity (5.0 × 10−6–5.0 × 10−4 M; R 2 = 0.9987), limit of detection (5.0 × 10−7 M), limit of quantitation (5.0 × 10−6 M), analytical precision (%RSD ≤ 9.8) and accuracy (%recovery = 101 ± 3). The proposed methodology was then applied to the analysis of a commercially available pharmaceutical eye drop preparation. The results are in good agreement with that declared by the manufacturer. The proposed methodology provides adequate results in terms of simplicity, cost, sample throughput, repeatability and accuracy for quality control of pheniramine enantiomers in pharmaceutical preparations.  相似文献   

3.
The inclusion complexes induced by cyclodextrins and its derivates have been shown previously to enhance the biotransformation of hydrophobic compounds. Using hydroxypropyl-β-cyclodextrin (HP-β-CD; 20% w/v), the water solubility of cortisone acetate increased from 0.039 to 7.382 g L−1 at 32 °C. The solubilization effect of HP-β-CD was far superior to dimethylformamide (DMF) and ethanol. The dissolution rate also significantly increased in the presence of HP-β-CD. The enzymatic stability of Δ1-dehydrogenase from Arthrobacter simplex TCCC 11037 was not influenced by the increasing concentrations of HP-β-CD contrary to the organic cosolvents which negatively influenced in the order DMF > ethanol. The activity inhibition effect caused by HP-β-CD was not so conspicuous as ethanol and DMF. Inactivation constants of ethanol, DMF, and HP-β-CD were 5.832, 4.541, and 1.216, respectively. The inactivation energy (E a) was in the order of HP-β-CD (55.1 kJ mol−1) > ethanol (39.9 kJ mol−1) > DMF (37.1 kJ mol−1).  相似文献   

4.
Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R s = 1.80 for naproxen to R s = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R s value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R s = 0.89).  相似文献   

5.
To determine optical purities of four aromatic 1,2-diol enantiomers synthesized by a Sharpless asymmetric dihydroxylation (AD) reaction of olefins, a simple and reliable separation method was achieved with high resolution (R s > 2.2) by capillary zone electrophoresis (CZE) using hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector and borate combined with methanol additive as background buffer. Furthermore, the developed CZE method was successfully applied to the determination of enantiomeric excess of the tested enantiomers. RSD values of migration time and peak area fell within 1.0 and 3.8%, respectively. This method allowed for the determination of ee (%) values of targeted isomers as high as 99.6%. Impurities of undesired isomers could be detected at levels as low as 0.2% in the presence of the targeted isomers.  相似文献   

6.
Summary The chiral separation of two newly synthesized arylpropionic acids of pharmaceutical interest, namely 2-[(5′-benzoil-2′-hydroxy)phenyl]-propionic acid (DF-1738y) and 2-[(4′-benzoiloxy-2′-hydroxy)phenyl]-propionic acid (DF-1770y), was performed by Capillary Zone Electrophoresis (CZE) using either cyclodextrins or antibiotics as chiral selectors in coated capillary. In order to optimize the separation, the effect on the migration time and resolution of type and concentration of the chiral selector, the buffer pH and the capillary temperature were studied. Several cyclodextrins, namely the charged 6A-monomethylamino-β-cyclodextrin (MeNH-β-CD) and the neutral methyl-β-cyclodextrins (M-β-CD) and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD), were tested for the enantiomeric separation of aryl propionic acids (APAs) compounds. Of these TM-β-CD provided the highest enantiomeric resolution at pH 5, however only DF-1738y optical isomers were baseline resolved. Using background electrolytes (BGEs) at higher pHs (pH=6–7) supported with the above listed CDs, an enantioresolution increase was recognized only for compound DF-1738y. In contrast DF-1770y exhibited the highest resolution at the lowest pH value studied (pH 4). The macrocyclic antibiotic vancomycin was therefore added to the BGE and tested as chiral selector using the partial filling counter current mode in order to obtain a sensitive analysis, high resolution and reduced antibiotic adsorption on the capillary wall. 5 mM vancomycin dissolved in the BGE at pH 5 and 25°C provided relatively high enantiomeric resolution (R DF-1738y=3.4,R DF-1770y=2.22) of both compounds.  相似文献   

7.
Summary Ultrahigh pressure liquid chromatography was demonstrated for fast and efficient chiral separations. Capillary columns approximately 13–24 cm in length packed with nonporous 1.0μm C6-modified silical particles were used. β-Cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) were added to the mobile phase as modifiers to produce transient diastereomeric complexes with the analytes. Pressures up to ≈42,000 psi were applied, and efficiencies in excess of 200,000 plates m−1 were obtained for separations that were accomplished in less than 2 minutes.  相似文献   

8.
Spontaneous and photoinduced protonation of 4-(2-naphthyl)pyridine (1) in solutions and in complexes with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied using the absorption and fluorescence spectroscopies. The structures and stabilities of complexes of compound 1 and its quaternized derivative, 1-methyl-4-(2-naphthyl)pyridinium perchlorate (3), with β-CD and HP-β-CD were examined by 1H NMR titration (logK = 1.5–2.3). The molecule of naphthylpyridine 1 is always in the cyclodextrin cavity, regardless of the pH value of the solution. 2-Hydroxypropyl-β-cyclodextrin binds better the neutral form of compound 1 than does β-CD, while naphthylpyridinium salts exhibit nearly equal affinities to both cavitands. According to spectroscopic data, pK a (1) is 5.12 in water, which favors protonation of the N atom both in the ground and excited states; as a result, the fluorescence spectrum exhibits only the band of the protonated form with a lifetime of 15 ns. The addition of HP-β-CD to a solution of naphthylpyridine 1 results in the formation of inclusion complex 1@HP-β-CD, lowers pK a to 4.62, and gives rise to a fluorescence band of the nonprotonated form of compound 1 with a lifetime of 1.25 ns. Therefore, the presence of compound 1 in the HP-β-CD cavity precludes its protonation in the excited state. The initial portions of the fluorescence curves for compound 1 in solution and in its complex with HP-β-CD obtained upon pulsed excitation were compared to propose the initiation mechanism of short-lived fluorescence of the nonprotonated form of naphthylpyridine 1. Quantum chemical modeling of the protonation and complexation of compound 1 in the presence of water was performed. Based on the results obtained, a reversible photoinduced mechanical motion of naphthylpyridine 1 in the HP-β-CD cavity was suggested.  相似文献   

9.
Solubilities of tricyclic acyclovir derivatives in buffered aqueous solutions of hydroxypropyl-β-cyclodextrin (HP-β-CD) at pH 5.5 and 7.0 were determined at 25 and 37 °C. Complexation of these compounds with HP-β-CD resulted in a noticeable increase of their solubility; nevertheless it was limited to tricyclic derivatives of acyclovir carrying an aryl substituent. Combination of 1H NMR and DSC techniques demonstrated the existence of inclusion complexes between acyclovir derivatives and HP-β-CD. The stability constants, estimated using the Higuchi–Connors method, were found in the range of 10–100 M−1. Additionally, the pK a values at 25 °C and molar extinction coefficients in aqueous buffered solutions were also determined for all studied compounds.  相似文献   

10.
The enantioresolution of zolmitriptan was performed using cyclodextrin (CD)-modified capillary zone electrophoresis (CZE) with hydroxypropyl-β-CD (HP-β-CD) as the chiral selector. The influence of experimental conditions on the enantioseparation of zolmitriptan, such as pH, temperature, applied voltage, and concentrations of running electrolyte and CD, was systematically investigated, obtaining a baseline separation of two enantiomers by the use of a 25 mM sodium dihydrogen phosphate (SDPH) running electrolyte (pH 2.4) containing 30 mM HP-β-CD at 15 °C. Binding constants for each enantiomer–HP-β-CD pair at different temperatures, as well as thermodynamic parameters for binding, were calculated. A nonlinear van’t Hoff plot was obtained, indicating that the thermodynamic parameters of complexation were temperature-dependent for zolmitriptan enantiomers. The significant contribution of the enthalpy difference to the Gibbs free energy change suggested a stereomeric barrier mechanism for chiral recognition. Figure Resolution of zolmitriptan enantiomers was achieved by using CD-modified CZE Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The electronic absorption and fluorescence spectral properties of 11-methyl-12H-benzo[a]phenothiazine (11-MeBPHT) were investigated in various media (water, ethanol, β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) aqueous solutions). Fluorescence quantum yields were respectively about 20 and 2 times larger in HP-β-CD and β-CD than in water. The formation of a 1:1 stoichiometry inclusion complex between 11-MeBPHT and HP-β-CD (association constant K f=118±3 M−1 at 20 °C) was studied in aqueous medium by fluorescence spectroscopy. Analytical figures of merit were satisfactory for 11-MeBPHT with linear dynamic ranges over at least two orders of magnitude and limits of detection (LODs) between 0.2 and 1 ng/ml according to the medium. An analytical application to the determination of 11-MeBPHT in human urine samples by the standard addition procedure led to satisfactory recovery percentages (91–108%).  相似文献   

12.
Aim of the present work was to investigate the effect of hydroxypropyl-β-cyclodextrin (HP-β-CD) on the solubility, dissolution rate and stability of Valsartan (VAL), a drug used orally for the treatment of hypertension. Phase solubility studies demonstrated the ability of the HP-β-CD to complex VAL and to increase drug solubility. The dissolved amount of VAL increased linearly with the addition of HP-β-CD according to an AL type plot. The apparent stability constant of the complex, calculated supposing a 1:1 stoichiometry, was 296±7 M−1. VAL/HP-β-CD interactions were also studied by 13C-NMR spectroscopy. Equimolar VAL/HP-β-CD solid systems were prepared by physical-mixing and freeze-drying, and their properties in the solid state studied by DSC and FT-IR analysis. The results provided clear indications of the formation of a new solid phase corresponding to the inclusion complex in the freeze-dried sample. The dissolution profiles of the drug from each solid system were affected by its physico-chemical properties, the freeze-dried being the most rapidly dissolving form. The thermal stability of the complex was studied, also determining the number and identity of the decomposition products of the drug. The stability studies revealed that the VAL/HP-β-CD complex significantly decreases the rate of VAL degradation. These results suggest that CD technology would be a very useful method to overcome the solubility and the stability problems of VAL.  相似文献   

13.
The nuclear magnetic resonance (NMR) spectroscopy demonstrated that the inclusion complexes of meso-tetrakis- (p-sulfonatophenyl) porphyrin (TPPS) with β-, Hydroxypropyl-β- and Methyl-β-cyclodextrin (β-, HP-β- and Me-β-CD) are formed, which resulted in the dissociation of TPPS J-aggregates efficiently under certain acidity. There are no significant differences in binding affinities and basic complexation mechanisms between TPPS and β-cyclodextrin (β-CD) or hydroxypropyl-β-cyclodextrin (HP-β-CD), i.e. porphyrin is included through the wide side of the cavity of β-CD or HP-β-CD. Alternatively, porphyrin is included through the narrow side of the Me-β-CD cavity.  相似文献   

14.
Summary 3-[(3-cholamidopropyl)-dimethylammoniol-1-propane sulfonate (CHAPS) can be used as an effective chiral selector for the separation of dansyl-amino acids by capillary electrophoresis (CE). While CHAPS can serve as an chiral selector, better enantiomeric separation can be performed by using CHAPS not as the sole chiral selector but as one of a [CHAPS-SDS-cyclodextrin] three-component system. In this CHAPS-SDS-CD system, enantiomeric separations of the amino acids can be readily accomplished by judiciously adjusting the pH of the solution, concentrations of CHAPS and SDS, and the concentration and type of CD. All amino acids can be baseline resolved in less than 15 minutes with resolution as high as 2.01 at pH 6.5 with 50 mM of CHAPS and 75 mM of SDS. The resolution is also dependent on the size of the CD. Substantial increase in the resolution can be readily achieved by replacing β-CD with γ-CD. For example, theR s for Leu was increased by four-folds (from 1.65 to 6.29) while the elution time still remains as short as 20 min when β-CD was replaced by γ-CD.  相似文献   

15.
The electronic absorption spectra and fluorescence spectra of 4-(2-naphthyl)pyridine (1), 2-(4-methyl-2-pyridyl)-4-(2-naphthyl)pyridine (2), and 4-(2-naphthyl)-2-phenylpyridine (3) in solutions and in complexes with β-cyclodextrin (β-CD) and well water-soluble hydroxy-propyl-β-cyclodextrin (HP-β-CD) were studied. Fluorescence near 475 nm observed in aqueous solutions of compounds 1–3 arises from protonated forms of these compounds produced in the excited state. Results of DFT quantum chemical calculations show an increase in proton affinity energies of excited-state naphthylpyridines 2 and 3. The formation of inclusion complexes with cyclodextrins makes protonation of compounds 2 and 3 more difficult, which manifests in large hypsochromic shifts of fluorescence band maxima. The stability constants of the complexes 1·HP-β-CD and 2·HP-β-CD determined from their fluorescence spectra are 3425 and 3760 L mol−1, respectively. The stability constant of the complex 3·HP-β-CD (5500±600 L mol−1) was found from the changes in the solubility of naphthylpyridine 3 in water upon complexation. Semiempirical quantum chemical calculations of the molecular structures and thermodynamic characteristics of pseudorotaxane inclusion complexes of trans-2, cis-2, and trans-2·H2O with HP-β-CD were carried out. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 272–280, February, 2007.  相似文献   

16.
Guest–host interactions were examined for neutral diclofenac (Diclo) and Diclofenac sodium (Diclo sodium) with each of the cyclodextrin (CD) derivatives: α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), all in 0.05 M aqueous phosphate buffer solution adjusted to 0.2 M ionic strength with NaCl at 20 °C, and with β-CD at different pHs and temperatures. The pH solubility profiles were measured to obtain the acid–base ionization constants (pK as) for Diclo in the presence and absence of β-CD. Phase solubility diagrams (PSDs) were also measured and analyzed through rigorous procedures to obtain estimates of the complex formation constants for Diclo/CD and Diclo sodium/CD complexation in aqueous solutions. The results indicate that both Diclo and Diclo sodium form soluble 1:1 complexes with α-, β-, and HP-β-CD. In contrast, Diclo forms soluble 1:1 Diclo/γ-CD complexes, while Diclo sodium forms 1:1 and 2:1 Diclo/γ-CD, but the 1:1 complex saturates at 5.8 mM γ-CD with a solubility product constant (pK sp = 5.5). Therefore, though overall complex stabilities were found to follow the decreasing order: γ-CD > HP-β-CD > β-CD > α-CD, some complex precipitation problems may be faced with aqueous formulations of Diclo sodium with γ-CD, where the overall concentration of the latter exceeds 5.8 mM γ-CD. Both 1H-NMR spectroscopic and molecular mechanical modeling (MM+) studies of Diclo/β-CD indicate the possible formation of soluble isomeric 1:1 complexes in water.  相似文献   

17.
The purpose of the work is physicochemical characterization of nimesulide (NI) and meloxicam (ME)–hydroxypropyl-β-cyclodextrin (HP-β-CD) binary systems both in solution and solid states and to improve the pharmaceutical properties of NI and ME via inclusion complexation with HP-β-CD. Binary systems of NI and ME with HP-β-CD have been characterized both in solution and solid state by different physicochemical methods. Three types of drug–HP-β-CD binary systems, namely physical mixtures (PM), kneaded systems (KS) and co evaporated systems (CS) in 1:1 and 1:2 molar ratios (1:1 and 1:2 M) were prepared. Phase solubility and 1H-NMR spectroscopic studies in solution state revealed 1:1 M complexation of NI and ME with HP-β-CD. A partial inclusion of NI with HP-β-CD at both molar ratios of kneaded and co evaporated systems and a true inclusion of ME with HP-β-CD at both molar ratios of co evaporated systems in solid state was confirmed by differential scanning calorimetry (DSC), powder X-ray diffractometry (powder X-RD) and scanning electron microscopy (SEM) studies. Dissolution properties of NI and ME–HP-β-CD binary systems were superior when compared to corresponding pure drugs. The aqueous solubility and dissolution properties of NI and ME can be improved by inclusion complexation with HP-β-CD. Author for correspondence: E-mail: nbnaid2@E-mail.uky.edu  相似文献   

18.
    
This paper presents a new chiral separation technology: two-phase (O/W) recognition chiral extraction. Distribution behavior of α-cyclohexyl-mandelic acid enantiomers was studied in the extraction system with D(L)-isobutyl tartrate in 1,2-dichloroethane organic phase and β-CD derivatives in aqueous phase, and the influence of the kind and concentration of extractant and pH on extraction performance was investigated. The experimental results indicate that two-phase (O/W) recognition chiral extraction is of strong chiral separation ability. HP-β-CD, HE-β-CD and Me-β-CD have higher recognition ability for S-CHMA than that for R-CHMA, among which HP-β-CD has the strongest ability; whereas, D-isobutyl tartrate has reversed recognition ability for them. In the extraction system containing HP-β-CD and D-isobutyl tartrate, e.e.% of S-CHMA in aqueous phase reached 27.6% by one stage extraction, and the distribution ratio for R-CHMA(k R ) and for S-CHMA(k s ) and separation factor (α) are 2.44, 0.89 and 2.49, respectively. Meanwhile, pH and concentration of extractant have great effects on chiral separation ability. Two-phase (O/W) recognition chiral extraction has great significance for preparative separation of racemic compounds. Supported by the National Natural Science Foundation of China (Grant No. 20776038)  相似文献   

19.
A capillary zone electrophoresis procedure has been developed for the chiral determination of pheniramine in eye drop. Native and derivative cyclodextrins (CDs) including γ-CD, β-CD, hydroxypropyl-β-CD and dimethyl-β-CD were tested as chiral selectors. Using 30 mM hydroxypropyl-β-CD in 50 mM phosphate buffer (pH 3.0), the acceptable resolution value (R = 1.55) was obtained. The assay was validated for linearity (3.3 × 10−6–5.0 × 10−4 M; R 2 = 0.9996), limit of detection (3.3 × 10−6 M), limit of quantification (8.5 × 10−6 M), analytical precision by terms of intra- and inter-day variability (RSD ≤ 2.57%), and accuracy (recovery ≥ 89.3%). The content of pheniramine in eye drop obtained by the proposed method was in good agreement with the declared value. The results indicated that pheniramine in the eye drop was present as the racemate.  相似文献   

20.
The inclusion complex formation of riboflavin (RF) with hydroxypropyl-β-cyclodextrin (HP-β-CD) in water was investigated by 1H NMR, UV-vis spectroscopy, and solubility methods. A 1:1 stoichiometry and thermodynamic parameters of complex formation (K, Δc G 0, Δc H 0, and Δc S 0) were determined. Complexation was characterized by negative enthalpy and entropy changes due to prevalence of van der Waals interactions and hydrogen bonding between polar groups of the solutes. A partial insertion of RF into macrocyclic cavity was revealed on the basis of 1H NMR data and molecular mechanics calculation. Location of benzene ring of RF molecule inside the hydrophobic cavity of HP-β-CD results in an increase of aqueous solubility of the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号