首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Two new simple and selective assay methods have been presented for the analysis of eprosartan mesylate (EPR) and hydrochlorothiazide (HCT) in pharmaceutical formulations. The first method is based on first-derivative ultraviolet spectrophotometry with zero-crossing measurements at 246 and 279 nm for EPR and HCT, respectively. The assay was linear over the concentration ranges 3.0-14.0 μg/mL for EPR and 1.0-12.0 μg/mL for HCT. The quantification limits for EPR and HCT were found to be 1.148 and 0.581 μg/mL, respectively, while the detection limits were 0.344 μg/mL for EPR and 0.175 μg/mL for HCT. The second method involved isocratic reversed-phase liquid chromatography using a mobile phase composed of acetonitrile-10 mM phosphoric acid (pH 2.5) (40:60, v/v). Olmesartan was used as internal standard and the substances were detected at 272 nm. The linearity ranges were found to be 0.5-30 and 0.3-15.0 μg/mL for EPR and HCT, respectively. The limits of detection were found to be 0.121 μg/mL for EPR and 0.045 μg/mL for HCT. The limits of quantification were found to be 0.405 and 0.148 μg/mL for EPR and HCT, respectively. The proposed methods were successfully applied to the determination of commercially available tablets with a high percentage of recovery and good accuracy and precision.  相似文献   

2.
Two specific, sensitive, and precise stability indicating chromatographic methods have been developed, optimized, and validated for Hydrochlorothiazide (HCT) and Spironolactone (SPR) determination in their mixtures and in presence of their impurities and degradation products. The first method was based on thin layer chromatographic (TLC) combined with densitometric determination of the separated spots. The separation was achieved using silica gel 60 F(254) TLC plates and ethyl acetate-chloroform-formic acid-triethyl amine (7:3:0.1:0.1, by volume) as a developing system. Good correlations were obtained between the integrated peak area of the studied drugs and their corresponding concentrations in different ranges. The second method was based on the high-performance liquid chromatography with ultraviolet detection, by which the proposed components were separated on a reversed phase C(18) analytical column using gradient elution system with deionized water-acetonitrile (97:3, v/v) for 8 min. Then acetonitrile was successively increased to 35% in the next 2 min, and kept constant in the following 10 min, finally 3% acetonitrile was regained again to stabilize the chromatographic system. The flow rate was maintained at 2 mL/min and the detection wavelength was at 230 nm. Linear regressions were obtained in the range of 4.0-50 μg/mL and 5.0-50 μg/mL for both HCT and SPR, respectively. Different parameters affecting the suggested methods were optimized for maximum separation of the cited components. System suitability parameters of the two developed methods were also tested. The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for determination of HCT and SPR in their commercial tablets. Both methods were also statistically compared to each other and to the reported method with no significant difference in performance.  相似文献   

3.
Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at lambda(max) 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 microg mL(-1) and 0.10-1.5 mg mL(-1) using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 microg mL(-1) using AAS method or 30-45 microg mL(-1) using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.  相似文献   

4.
A rapid, simple, and highly sensitive second derivative synchronous fluorometric method has been developed for the simultaneous determination of metoclopramide (MT) and pyridoxine (PY) in a binary mixture. The method is based on measurement of the native fluorescence of these drugs at delta lambda = 80 nm in methanol. The different experimental parameters affecting the native fluorescence of the drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the ranges of 0.02-0.4 and 0.1-2 microg/mL for MT and PY, respectively. The limits of detection were 0.003 and 0.007 microg/mL and the limits of quantification were 0.008 and 0.02 microg/mL for MT and PY, respectively. The proposed method was successfully applied to the determination of MT and PY in synthetic mixtures and in commercial syrup. The results were in good agreement with those obtained with a reported method. The high sensitivity attained by the proposed method allowed the determination of MT in spiked and real human plasma samples. The mean percent recoveries of MT from spiked and real human plasma (n = 3) were 93.72 +/- 3.15 and 89.72 +/- 2.19 respectively.  相似文献   

5.
王萍  李洁  郑和辉 《色谱》2007,25(5):743-746
建立了化妆品中7种磺胺(磺胺醋酰、磺胺吡啶、磺胺甲基嘧啶、磺胺二甲嘧啶、磺胺甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲基异唑)和甲硝唑及氯霉素的高效液相色谱测定方法。样品经0.1%甲酸水溶液-乙腈(体积比为8∶2)混合液超声提取后进行液相色谱分析。方法的定量检测限为3~80 μg/g,7种磺胺在20~200 μg/mL时,甲硝唑及氯霉素在40~400 μg/mL时方法的线性关系良好(r≥0.9993)。加标回收率为83.8%~105.3%(7种磺胺的添加水平为50 μg/mL和150 μg/mL,甲硝唑及氯霉素的添加水平为100 μg/mL和300 μg/mL),其相对标准偏差均小于5%。  相似文献   

6.
Three new, different, simple, sensitive, and accurate methods were developed for quantitative determination of nifuroxazide (I) and drotaverine hydrochloride (II) in a binary mixture. The first method was spectrophotometry, which allowed determination of I in the presence of II using a zero-order spectrum with an analytically useful maximum at 364.5 nm that obeyed Beer's law over a concentration range of 2-10 microg/mL with mean percentage recovery of 100.08 +/- 0.61. Determination of II in presence of I was obtained by second derivative spectrophotometry at 243.6 nm, which obeyed Beer's law over a concentration range of 2-10 microg/mL with mean recovery of 99.82 +/- 1.46%. The second method was spectrodensitometry, with which both drugs were separated on a silica gel plate using chloroform-acetone-methanol-glacial acetic acid (6 + 3 + 0.9 + 0.1) as the mobile phase and ultraviolet (UV) detection at 365 nm over a concentration range of 0.2-1 microg/band for both drugs, with mean recoveries of 99.99 +/- 0.15 and 100.00 +/- 0.34% for I and II, respectively. The third method was reversed-phase liquid chromatography using acetonitrile-water (40 + 60, v/v; adjusted to pH 2.55 with orthophosphoric acid) as the mobile phase and pentoxifylline as the internal standard at a flow rate of 1 mU/min with UV detection at 285 nm at ambient temperature over a concentration range of 2-10 microg/mL for both drugs, with mean recoveries of 100.24 +/- 1.51 and 100.08 +/- 0.78% for I and II, respectively. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the above drugs with no interference from other dosage form additives. The validity of the suggested procedures was further assessed by applying the standard addition technique which was found to be satisfactory, and the percentage recoveries obtained were in accordance with those given by the EVA Pharma reference spectrophotometric method.  相似文献   

7.
Column liquid chromatography (LC) and thin-layer chromatography (TLC)-densitometry methods are described for simultaneous determination of acediasulfone (Ace) and cinchocaine (Cinco). In the LC method, the separation and quantitation of the 2 drugs was achieved on a Zorbax C8 column (5 microm, 150 x 4.6 mm id) using a mobile phase composed of methanol-phosphate buffer, pH 2.5 (66 + 34, v/v), at a flow rate of 1 mL/min and ultraviolet detection at 300 and 327 nm for Ace and Cinco, respectively. The method showed linearity over concentration ranges of 20-200 and 45-685 microg/mL, respectively. In the TLC-densitometry method, a mobile phase composed of methanol-tetrahydrofuran-acetic acid (45 + 5 + 0.5, v/v/v) was used for the separation of the 2 drugs. The linearity range was 0.5-4 and 2-9 microg/spot, respectively. In addition, stability indicating TLC-densitometry method has been developed for determination of cefuroxime sodium in the presence of 5-70% of its known hydrolytic degradation products. The mobile phase butanol-methanol-tetrahydrofuran-concentrated ammonium hydroxide (50 + 50 + 50' + 5, v/v/v/v) was used. The concentration range was 2-10 microg/spot. The optimized methods proved to be specific and accurate for the analysis of the cited drugs in laboratory-prepared mixtures and dosage forms. The obtained results agreed statistically with those obtained by the reference methods.  相似文献   

8.
A direct plasma injection HPLC method has been developed for the determination of selected phenothiazines (promethazine, promazine, chlorpromazine) using a Hisep column. The method is easy to perform and requires 20 microL of a filtered plasma sample. The chromatographic run time is less than 11 min using a mobile phase of 15:85 v/v acetonitrile-0.18 m ammonium acetate pH 5.0 and UV detection at 254 nm. The method is linear in the concentration range 0.1-25 microg mL(-1) (r > 0.99, n = 6) for each analyte with RSD less than 6%. Interday and intraday variability were found to be < or =14%. The limits of detection and quantitation were 0.1 (S/N > 3) and 0.25 microg mL(-1) (S/N > 10), respectively, for each of the three phenothiazines. We can also apply this method to separate three other phenothiazines (ethopromazine, trifluoroperazine, prochlorperazine), although it lacks the selectivity to determine the concentration of all six drugs concurrently. The separation is feasible using these drugs in certain combinations.  相似文献   

9.
This paper describes validated high-performance column liquid chromatographic (HPLC) and high-performance thin-layer chromatographic (HPTLC) methods for simultaneous estimation of acetylsalicylic acid (ASA) and clopidogrel bisulfate (CLP) in pure powder and formulations. The HPLC separation was achieved on a Nucleosil C8 column (150 mm length x 4.6 mm id, 5 microm particle size) using acetonitrile-phosphate buffer, pH 3.0 (55 + 45, v/v) mobile phase at a flow rate of 1.0 mL/min at ambient temperature. The HPTLC separation was achieved on an aluminum-backed layer of silica gel 60F254 using ethyl acetate-methanol-toluene-glacial acetic acid (5.0 + 1.0 + 4.0 + 0.1, v/v/v/v) mobile phase. Quantitation was achieved with UV detection at 235 nm over the concentration range 4-24 microg/mL for both drugs, with mean recoveries of 99.98 +/- 0.28 and 100.16 +/- 0.66% for ASA and CLP, respectively, using the HPLC method. Quantitation was achieved with UV detection at 235 nm over the concentration range of 400-1400 ng/spot for both drugs, with mean recoveries of 99.93 +/- 0.55 and 100.21 +/- 0.83% for ASA and CLP, respectively, using the HPTLC method. These methods are simple, precise, and sensitive, and they are applicable for the simultaneous determination of ASA and CLP in pure powder and formulations.  相似文献   

10.
Two sensitive and selective methods were developed for the determination of some oxicams, namely, lornoxicam (LOX), tenoxicam (TEX), and meloxicam (MEX), in the presence of their alkaline degradation products. The first method is based on the thin-layer chromatographic separation of the 3 drugs from their alkaline degradation products, followed by densitometric measurement of the intact drug spots for LOX, TEX, and MEX at 380, 370, and 364 nm, respectively. The developing systems used for separation are ethyl acetate-methanol-26% ammonia (17 + 3 + 0.35, v/v/v) for LOX and TEX and chloroform-n-hexane-96.0% acetic acid (18 + 1 + 1, v/v/v) for MEX. The linear ranges were 0.25-6.0 microg/spot for LOX and TEX and 0.5-10 microg/spot for MEX, with mean recoveries of 99.80 +/- 1.32, 100.57 +/- 1.34, and 100.71 +/- 1.57%, respectively. The second method is based on the liquid chromatographic separation of the 3 drugs from their alkaline degradation products on a reversed-phase C18 column, using mobile phases of methanol-acetonitrile-acetate buffer, pH 4.6 (4.5 + 0.5 + 5.0, v/v/v) for LOX and MEX and methanol-acetonitrile-acetate buffer, pH 4.6 (1.9 + 0.1 + 3.0, v/v/v) for TEX at ambient temperature. Quantification is achieved by UV detection at 280 nm, based on peak area. The linear ranges were 0.5-20 microg/mL for LOX and TEX and 1.25-50 microg/mL for MEX, with mean recoveries of 99.81 +/- 1.01, 98.90 +/- 1.61, and 100.86 +/- 1.55%, respectively. The methods were validated according to guidelines of the International Conference on Harmonization. The developed methods were successfully applied to the determination of LOX, TEX, and MEX in bulk powder, laboratory-prepared mixtures containing different percentages of degradation products, and pharmaceutical dosage forms.  相似文献   

11.
A rapid, simple, and highly sensitive second-derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixtures of cinnarizine (CN) and nicergoline (NIC). The method is based upon measurement of the native fluorescence of these drugs at constant wavelength difference (Deltalambda) = 80 nm in aqueous methanol (50%, v/v). The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.025-1.5 and 0.25-5.5 microg/mL for CN and NIC, respectively, with lower detection limits of 0.58 and 0.82 ng/mL and quantitation limits of 1.93 and 2.73 ng/mL for CN and NIC, respectively. The proposed method was successfully applied for the determination of the studied compounds in synthetic mixtures and in commercial tablets. The results obtained were in good agreement with those obtained with reference methods. The high sensitivity attained by the proposed method allowed the determination of CN in real and spiked human plasma. The mean recovery in the case of spiked human plasma [number of trials (n) = 3] was 102.82 +/- 2.17%, while that in real human plasma (n = 3) was 105.25 +/- 2.05.  相似文献   

12.
A column high-performance liquid chromatography (HPLC) method was developed for the determination of glucosamine in dosage forms. Glucosamine was derivatized by addition of a solution containing orthophthaldialdehyde. The HPLC separation was achieved on a Spherimage 80 ODS2 column (250 x 4 mm id, 5 microm particle size) using an isocratic mobile phase containing phosphate buffer-methanol (90 + 10, v/v, pH 6.50) and methanol-tetrahydrofuran (97 + 3, v/v) in proportions of 85 + 15 at a flow rate of 1 mL/min, followed by fluorescence detection. The method was validated for specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ). The detector response for glucosamine HCI was linear over the concentration range of 0.1-20 microg/mL with a correlation coefficient of 0.9980. The accuracy was between 99.4 and 100.8%. The LOD and the LOQ were 0.009 and 0.027 microg/mL, respectively. The method was applied to determination of glucosamine in solid dosage forms.  相似文献   

13.
A liquid chromatography (LC) method and an ultraviolet (UV) spectrophotometric method were developed and validated for quantitative determination of amlodipine in tablets and compounded capsules. The isocratic LC analyses were performed on an RP18 column using a mobile phase composed of 0.1% (v/v) ortho-phosphoric acid (pH 3.0) -acetonitrile (60 + 40, v/v) at a flow rate of 1.0 mL/min. The UV spectrophotometric method was performed at 238 nm. The analytical methods were validated according to International Conference on Harmonization Guidelines. The calibration graphs were linear [correlation coefficient (r) > 0.999] in the studied concentration range of 10-30 microg/mL for LC and 10-35 microg/mL for UV spectrophotometry. The relative standard deviation values for intraday and interday precision studies were less than 2%, and the accuracy was greater than 98% for both methods. The specificity of the LC method was proved using forced degradation. Statistical analyses showed no significant difference between the results obtained by the 2 methods. The proposed methods are precise and accurate and can be applied directly and easily to the oral pharmaceutical preparations of amlodipine.  相似文献   

14.
A new RP-LC method and two new spectrophotometric methods, principal component regression (PCR) and first derivative spectrophotometry, are proposed for simultaneous determination of diflucortolone valerate (DIF) and isoconazole nitrate (ISO) in cream formulations. An isocratic system consisting of an ACE C18 column and a mobile phase composed of methanol-water (95 + 5, v/v) was used for the optimal chromatographic separation. In PCR, the concentration data matrix was prepared by using synthetic mixtures containing these drugs in methanol-water (3 + 1, v/v). The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbances at 29 wavelengths in the range of 242-298 nm for DIF and ISO in the zero-order spectra of their combinations. In first derivative spectrophotometry, dA/dlambda values were measured at 247.8 nm for DIF and at 240.2 nm for ISO in first derivative spectra of the solution of DIF and ISO in methanol-water (3 + 1, v/v). The linear ranges were 4.00-48.0 microg/mL for DIF and 50.0-400 microg/mL for ISO in the LC method, and 2.40-40.0 microg/mL for DIF and 60.0-260 microg/mL for ISO in the PCR and first derivative spectrophotometric methods. These methods were validated by analyzing synthetic mixtures. These three methods were successfully applied to two pharmaceutical cream preparations.  相似文献   

15.
A simple and highly sensitive voltammetric method was developed for the determination of benazepril (I) and ramipril (II). The compounds were treated with nitrous acid, and the cathodic current produced by the resulting nitroso derivatives was measured. The voltammetric behavior was studied by adopting direct current (DCt), differential pulse (DPP), and alternating current (ACt) polarography. Both compounds produced well-defined, diffusion-controlled cathodic waves over the whole pH range in Britton-Robinson buffers (BRb). At pH 3 and 5, the values of diffusion-current constants (Id), were 5.90 +/- 0.40 and 6.66 +/- 0.61 for I and II, respectively. The current concentration plots for I were rectilinear over the range of 1.5-40 and 0.1-30 microg/mL in the DCt and DPP modes, respectively; for II, the range was 2-30 and 0.1-20 microg/mL in the DCt and DPP modes, respectively. The minimum detectabilities (S/N = 2) were 0.015 microg/mL (about 3.25 x 10(-8)M) and 0.012 microg/mL (about 2.88 x 10(-8)M) for I and II, respectively, adopting the DPP mode. Results obtained for the proposed method when applied to the determination of both compounds in dosage forms were in good agreement with those obtained using reference methods. Hydrochlorthiazide, which is frequently co-formulated with these drugs, did not interfere with the assay. The method was also applied to the determination of benazepril in spiked human urine and plasma. The percentage recoveries adopting the DPP mode were 96.2 +/- 1.21 and 95.7 +/- 1.61, respectively.  相似文献   

16.
A new, simple column reversed-phase high-performance liquid chromatographic (HPLC) method for simultaneous determination of rabeprazole sodium (RAB) and domperidone (DOM) in a combined tablet dosage form has been developed and validated. Determination was performed using a Jasco HPLC system with a HiQ SiL octadecylsilane (C18) column (250 x 4.6 mm id), acetonitrile-0.1 M ammonium acetate (50 + 50, v/v) mobile phase, and paracetamol as an internal standard. The detection was performed using a UV detector set at 280 nm. The method was validated with respect to linearity, accuracy, precision, and robustness. Beer's law was obeyed in the concentration range of 1.0-10.0 and 0.5-5.0 microg/mL for RAB and DOM, respectively. The method has been successfully applied for the analysis of drugs in a pharmaceutical formulation.  相似文献   

17.
A simple and selective HPLC assay was developed and utilized for determination of human plasma protein binding of baicalin. The method involved solid-phase extraction and reversed-phase chromatographic separation with a mobile phase of acetonitrile-0.02 mol/L phosphate buffer (pH 2.5; 25:75, v/v) and UV detection at 276 nm. The standard curve for baicalin was linear over the concentration range 0.1-20 microg/mL and the limit of detection was 0.02 microg/mL. The absolute recovery was greater than 76%. The intra-day and inter-day variations were less than 10%. Ultrafiltration technique was applied to determining the plasma protein binding of baicalin in human plasma. Results show the plasma protein binding of baicalin was in the range 86-92% over all the concentrations studied and the protein binding association constant was determined to be 1.21 x 10(5) L/mol at 4 degrees C.  相似文献   

18.
An accurate, simple, reproducible, and sensitive HPLC method was developed and validated for the simultaneous determination of atorvastatin calcium, ezetimibe, and fenofibrate in a tablet formulation. The analyses were performed on an RP C18 column, 150 x 4.60 mm id, 5 pm particle size. The mobile phase methanol-acetonitrile-water (76 + 13 + 11, v/v/v), was pumped at a constant flow rate of 1 mL/min. UV detection was performed at 253 nm. Retention times of atorvastatin calcium, ezetimibe, and fenofibrate were found to be 2.25, 3.68, and 6.41 min, respectively. The method was validated in terms of linearity, precision, accuracy, LOD, LOQ, and robustness. The response was linear in the range 2-10 microg/mL (r2 = 0.998) for atorvastatin calcium, 2-10 microg/mL (r2 = 0.998) for ezetimibe, and 40-120 microg/mL (r2 = 0.998) for fenofibrate. The developed method can be used for routine quality analysis of the drugs in the tablet formulation.  相似文献   

19.
A simple reversed-phase liquid chromatographic method is developed for the simultaneous quantitation of the anticancerous drugs vincristine, vinblastine, and their precursors catharanthine and vindoline using a Merck Chromolith Performance reversed-phase high-performance liquid chromatography column. A better resolution is obtained in comparison with available particulate-type C18 columns. The column provides good reproducibility and peak symmetry. Chromatography is carried isocratically with a mobile phase of acetonitrile-0.1M phosphate buffer containing 0.5% glacial acetic acid (21:79, v/v; pH 3.5) at a flow rate of 1.2 mL/min and UV detection at 254 nm. Parameters such as linearity, limits of quantitation (LOQ) and detection (LOD), precision, accuracy, recovery, and robustness are studied. The method is selective and linear for alkaloid concentration in the range 0.25 microg-25 microg/mL. The LOQ and LOD are 25, 46, 56, and 32 microg/mL and 8, 14, 18, and 10 microg/mL, respectively. The results of accuracy studies are good. Values for coefficient of variation are 2.50, 1.82, 1.33, and 1.13, respectively. The percent recovery of the alkaloids was found to be 96%, 97%, 98%, and 98%, respectively. Peak purity and homogeneity of these compounds in plant extract is studied using a photodiode-array detector. This simple and rapid method of analysis is applied for the determination of these alkaloids in a large number of leaf extracts of Catharanthus roseus..  相似文献   

20.
A new HPLC method for the determination of geniposide in rat serum with solid-phase extraction (SPE) for preconcentration is described. Geniposide and an internal standard (paeoniflorin) were extracted from serum by SPE using C18 cartridges. Analysis of the extract was then performed on a reversed-phase C18 column using acetonitrile-water (16:84, v/v) as the eluting solvent system, and UV detection at 238 nm was used to measure the analyte with a limit of quantitation about 0.1 microg/mL. The calibration curve for geniposide was linear (r = 0.9993) in the concentration range 0.1-16.0 microg/mL. The intra- and inter-day precision of the geniposide were determined and their RSD did not exceed 10%. The validated method has been successfully applied for pharmacokinetic studies of geniposide from rat serum after oral administration of Yin-Zhi-Ku decoction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号