首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

2.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

3.
Features of the formation of lead-ferroniobate compounds in the xBaCO3–(1 – x)PbO–Fe2O3–Nb2O5 system by solid-phase synthesis are investigated. For perovskite-type lead-ferroniobate solid solution, a single-phase concentration region is revealed at 1233 K. The crystalline structures of the synthesized compounds are refined using Rietveld analysis and the Pm3?m and R3m space groups. Ceramic samples of lead ferroniobate are studied by scanning electron microscopy.  相似文献   

4.
A series of glasses [(TeO2) x (B2O3)1−x ]1−y [Ag2O] y with x = 70 and y = 10, 15, 20, 25 and 30 mol% were synthesised by rapid quenching. Longitudinal and shear ultrasonic velocity were measured at room temperature and at 5 MHz frequency. Elastic properties, Poisson's ratio, microhardness, softening temperature and Debye temperature have been calculated from the measured density and ultrasonic velocity at room temperature. The experimental results indicate that the elastic constants depend upon the composition of the glasses and the role of the Ag2O inside the glass network is discussed. Estimated parameters based on Makishima–Mackenzie theory and bond compression model were calculated in order to analyse the experimental elastic moduli. Comparison between the experimental elastic moduli data obtained in the study and the calculated theoretically by the mentioned above models has been discussed.  相似文献   

5.
6.
In the present work, (1−x)(0.935Bi0.5Na0.5TiO3–0.065BaTiO3)–xKNbO3 (BNT–BT–KN, BNT–BT–100xKN) ceramics with x ranging from 0 to 0.1 were prepared by the conventional ceramic fabrication process. A large electrostrictive coefficient of ∼10−2 m4 C−2 is obtained with the composition x ranging from 0.02 to 0.1, which is close to the well-known electrostrictive material Pb(Mg1/3Nb2/3)O3. Under an electric field of 4 kV/mm, the electrostrictive strain can reach as high as 0.08%. Besides, the electric field induced strain behavior indicates a temperature independent behavior within the temperature range of 20 to 150°C. The large electrostrictive strain is suggested to be ascribed to the formation of non-polar (NP) phase developed by the KNbO3 substitution, and the high electrostrictive coefficient of BNT–BT–KN ceramics makes them great candidates to be applied in the new solid-state actuators.  相似文献   

7.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

8.
The specific heat of [NH2(CH3)2]2ZnCl4 was measured calorimetrically in the temperature region 80–300 K. As the temperature T decreases, the C p (T) dependence indicates a phase transition sequence, with the phase transition at T6=151 K observed for the first time. The thermodynamic characteristics of the crystal were refined. The transformation occurring at T2=298.3 K is shown to be an incommensurate-commensurate phase transition.  相似文献   

9.
Differential scanning calorimetry has been used to study the influence of temperature on the heat capacity of synthesized vanadates Zn2V2O7, (Cu0.56Zn1.44)V2O7, and (Cu1.0Zn1.0)V2O7. It is found that dependences Cp = f(T) have extremes. The thermodynamic properties of Zn2V2O7 have been determined.  相似文献   

10.
The structural characteristics, valence states, and distribution of cerium ions between the components in In2O3–CeO2 and SnO2–CeO2 nanocomposites fabricated using the impregnation method were studied. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) were used to show that, during impregnation, cerium ions are not included into In2O3 crystals and are disposed only on their surface in the form of nano-sized crystallites or amorphous clusters. On the other side, under the contact of CeO2 clusters with a surface of SnO2 matrix crystals, cerium ions penetrate into the surface layer of these crystals. In contrast to an In2O3–CeO2 system, where the addition of CeO2 does not affect the conduction activation energy, where cerium oxide is added to SnO2, the observed increase in the resistance of a SnO2–CeO2 composite is accompanied by a sufficient increase in activation energy. These data and the XPS spectra confirm the modification of the surface layers of conductive SnO2 crystals as, a result of the penetration of cerium ions into these layers.  相似文献   

11.
Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time–temperature regime and melt/glass transformation.  相似文献   

12.
The reflection and transmission spectra of ceramic samples of SrTiO3–SrMg1/3Nb2/3O3 solid solutions have been measured in the frequency range of 5–5000 cm–1 and in the temperature range of 5–370 K. Based on these spectra, the spectra of the real ε'(ν) and imaginary ε''(ν) parts of the complex permittivity ε*(ν) have been simulated by the method of dispersion analysis. It has been found that the temperature evolution of the dielectric constant is entirely determined by the behavior of the soft mode.  相似文献   

13.
A new Li2O–Nb2O5–TiO2 (LNT) ceramic with the Li2O:Nb2O5:TiO2 mole ratio of 5.5:1:7 was prepared by solid state reaction route. The phase and structure of the ceramic were characterized by X-ray diffraction and scanning electron microscopy (SEM). The microwave dielectric properties of the ceramics were studied using a network analyzer. The microwave dielectric ceramic has low sintering temperature (∼1075°C) and good microwave dielectric properties of ε r=42, Q×f=16900 GHz (5.75 GHz), and τ f =63.7 ppm/°C. The addition of B2O3 can effectively lower the sintering temperature from 1075 to 875°C and does not induce degradation of the microwave dielectric properties. Obviously, the LNT ceramics can be applied to microwave low temperature-cofired ceramics (LTCC) devices.  相似文献   

14.
Composite materials used for electrode and electrolyte materials have been intensely studied in view of their advantages such as higher conductivity and better operational performance compared to their single-phase counterparts. The present work aims at studying the electrical and structural characteristics of a new composite electrolyte namely, (PbI2) x  − (Ag2O–Cr2O3)100−x where x = 5, 10, 15, 20, and 25 mol%, respectively, prepared by the melt quenching technique. The room temperature X-ray diffraction spectra revealed certain crystalline phases in the samples. AC conductivity analysis for all the prepared samples was carried out over the frequency range 1 MHz–20 Hz and in the temperature window 297–468 K. The room temperature conductivity values were calculated to be in the order of 10−5–10−3 Scm−1. An Arrhenius dependence of temperature with conductivity was observed, and the activation energies calculated were found to be in the range 0.27–0.31 eV. Furthermore, the total ionic transport number (t i) values obtained for all these indicated the ionic nature of this system. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

15.
The structural and the thermodynamic properties of potassium nitrate KNO3 and its composites with nanosized aluminum oxide Al2O3 have been studied by differential scanning calorimetry. It has been found that an amorphous phase forms in composites (1–x)KNO3–xAl2O3. The thermal effect corresponding to this phase has been observed at 316°C. It has been found that the phase transition heats of potassium nitrate decreased as the aluminum oxide fraction increased.  相似文献   

16.
Using time-resolved photoelectron spectroscopy, the decay channels of AuO2 and Au2O2 following photoexcitation with 3.1-eV photons have been studied. For AuO2, a state with a rather long lifetime of 30 ps has been identified. Its decay path could not be determined but photodesorption can be excluded. For Au2O2, the spectra indicate O2 desorption after 3.1-eV photoexcitation on a time scale of 1 ps. While comparing these results on Au n O2 with analogous data on Ag n O2 clusters, a discernible pattern emerges: for dissociatively bound O2(AuO2, Ag3O2), there are long-living excited states which do not decay by oxygen desorption, while for molecular chemisorption (Au2O2, Ag2O2, Ag4O2, Ag8O2), the 3.1-eV photoexcitation triggers fast O2 desorption with a high quantum yield.  相似文献   

17.
Polycrystalline cubic Li7La3Zr2O12 (LLZ) with garnet-related type structure has been synthesized at 700 °C by modified sol–gel processes using citric acid as organic complexing agent and butan-1-ol or propan-2-ol as surface active agent. Thermal analysis (thermogravimetric/differential thermal analysis) indicated that the gel must be annealed at around 700 °C to completely remove the organic solvent. X-ray powder diffraction, X-ray fluorescence, and scanning electron microscopic investigations revealed that Al may not be essential to form cubic-phase LLZ; however, the addition of Al2O3 led to enhanced sintering of LLZ.  相似文献   

18.
Organic–inorganic hybrid sample [N(C4H9)4]2Cu2Cl6 was prepared via the reaction between copper chloride and tetrabutylammonium chloride. The compound was characterized by X-ray powder diffraction, IR, Raman, differential scanning calorimetry (DSC), DTA-TGA analysis and electrical impedance spectroscopy. DSC studies indicate a presence of one-phase transition at 343 K. The complex impedance of compound [N(C4H9)4]2Cu2Cl6 have been investigated in temperature and frequency ranges 300–380 K and 200 Hz–5 MHz, respectively. The Z′ and Z″ versus frequency plots are well fitted to an equivalent circuit model. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The frequency dependence of the conductivity is interpreted in term of Jonscher's law: s(w) = sdc + Awn \sigma (\omega ){ } = {\sigma_{\rm{dc}}} + { }A{\omega^n} . The conductivity follows the Arrhenius relation. The variation of the value of these elements with temperatures confirmed the availability of the phase transition at 343 K detected by DSC and electrical measurements.  相似文献   

19.
We investigate the kinetics of photodarkening and recording of holographic diffraction gratings in amorphous As4S3Se3 thin-film structures doped with tin (Sn) in concentrations of 0–10 at %. It is established that an increase in the Sn concentration leads to a decrease in the photodarkening rate and degree. The photodarkening kinetics is approximated by a stretched exponential function. It is found that an increase in the Sn concentration leads to a decrease in the transmission (photodarkening) variation in the investigated As4S3Se3–Sn films. It is determined that, in the recording of holographic diffraction gratings at a Sn concentration of 3–8 at %, the As4S3Se3–Sn films exhibit the maximum sensitivity and diffraction efficiency of the recorded gratings. It is shown that the dependence of diffraction efficiency on the As4S3Se3 film thickness has the maximum at a film thickness of 4 µm.  相似文献   

20.
The refraction R of the diglycine nitrate (DGN) crystal, (NH2CH2COOH)2 · HNO3, in the para-and ferroelectric phases has been calculated in the model of noninteracting diatomic chemical bonds of the elementary unit cell of the crystal on the basis of the longitudinal and transversal polarizabilities of these bonds. The calculated magnitudes of the principal refractive indices n p , n m , and n g and the orientations of the optical indicatrix of the crystal agree satisfactorily with experimentally observed values. Introducing the coefficient of Lorenz-Lorentz interaction x into the corresponding formula permits better agreement of the calculated and experimental refractive indices of DGN crystal to be obtained. The temperature changes of these x coefficients upon the ferroelectric phase transition in the DGN crystal have been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号