首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
Modeling strain gradient plasticity effects has achieved considerable success in recent years. However, incorporating the full mechanisms of the pressure-sensitive yielding and the size dependence of plastic deformation still remains an open challenge. In this work, a mechanism-based stain gradient (MSG) plasticity theory for pressure sensitive materials with a variable material length-scale parameter is presented. The flow theory of MSG plasticity based on the Drucker–Prager yield function is established following the same hierarchical framework of MSG plasticity proposed by Gao et al., 1999, Huang et al., 2000 and Qiu et al. (2003) in order to link the strain gradient plasticity theory on the mesoscale to the Taylor dislocation model on the micro-scale. The incremental constitutive relation based on the associated flow rule is derived for the Drucker–Prager yield function on the micro-scale, including the higher-order stress introduced as the thermodynamic conjugate of strain gradient at the mesoscale. The proposed theory successfully predicts the experimental results. The numerical results show that when the pressure-sensitivity index defined by the Drucker–Prager yield function takes different values, the material response curves are different and the material strength increases with the increase of pressure-sensitivity index. It proves that this procedure is able to represent the material behavior of pressure-sensitive materials such as geomaterials, polymeric materials, metallic foams and metallic glass.  相似文献   

2.
A physically motivated and thermodynamically consistent formulation of small strain higher-order gradient plasticity theory is presented. Based on dislocation mechanics interpretations, gradients of variables associated with kinematic and isotropic hardenings are introduced. This framework is a two non-local parameter framework that takes into consideration large variations in the plastic strain tensor and large variations in the plasticity history variable; the equivalent (effective) plastic strain. The presence of plastic strain gradients is motivated by the evolution of dislocation density tensor that results from non-vanishing net Burgers vector and, hence, incorporating additional kinematic hardening (anisotropy) effects through lattice incompatibility. The presence of gradients in the effective (scalar) plastic strain is motivated by the accumulation of geometrically necessary dislocations and, hence, incorporating additional isotropic hardening effects (i.e. strengthening). It is demonstrated that the non-local yield condition, flow rule, and non-zero microscopic boundary conditions can be derived directly from the principle of virtual power. It is also shown that the local Clausius–Duhem inequality does not hold for gradient-dependent material and, therefore, a non-local form should be adopted. The non-local Clausius–Duhem inequality has an additional term that results from microstructural long-range energy interchanges between the material points within the body. A detailed discussion on the physics and the application of proper microscopic boundary conditions, either on free surfaces, clamped surfaces, or intermediate constrained surfaces, is presented. It is shown that there is a close connection between interface/surface energy of an interface or free surface and the microscopic boundary conditions in terms of microtraction stresses. Some generalities and utility of this theory are discussed and comparisons with other gradient theories are given. Applications of the proposed theory for size effects in thin films are presented.  相似文献   

3.
The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009, A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic multiplier, J. Mech. Phys. Solids, 57, 1045–1057). The rate-dependent formulation is implemented numerically and the full-field indentation problem is analyzed via finite element calculations, for both ideally plastic behavior and dissipative hardening. The isotropic strain-gradient theory involves three material length scales, and the relative significance of these length scales upon the degree of size effect is assessed. Indentation maps are generated to summarize the sensitivity of indentation hardness to indent size, indenter geometry and material properties (such as yield strain and strain hardening index). The finite element model is also used to evaluate the pertinence of the Johnson cavity expansion model and of the Nix–Gao model, which have been extensively used to predict size effects in indentation hardness.  相似文献   

4.
The strain gradient work hardening is important in micro-indentation of bulk metals and thin metallic films, though the indentation of thin films may display very different behavior from that of bulk metals. We use the conventional theory of mechanism-based strain gradient plasticity (CMSG) to study the indentation of a hard tungsten film on soft aluminum substrate, and find good agreement with experiments. The effect of friction stress (intrinsic lattice resistance), which is important in body-center-cubic tungsten, is accounted for. We also extend CMSG to a finite deformation theory since the indentation depth in experiments can be as large as the film thickness. Contrary to indentation of bulk metals or soft metallic films on hard substrate, the micro-indentation hardness of a hard tungsten film on soft aluminum substrate decreases monotonically with the increasing depth of indentation, and it never approaches a constant (macroscopic hardness). It is also shown that the strain gradient effect in the soft aluminum substrate is insignificant, but that in the hard tungsten thin film is important in shallow indentation. The strain gradient effect in tungsten, however, disappears rapidly as the indentation depth increases because the intrinsic material length in tungsten is rather small.  相似文献   

5.
The size dependent strengthening resulting from the transformation strain in Transformation Induced Plasticity (TRIP) steels is investigated using a two-dimensional embedded cell model of a simplified microstructure composed of small cylindrical metastable austenitic inclusions within a ferritic matrix. Earlier studies have shown that within the framework of classical plasticity or of the single length parameter Fleck–Hutchinson strain gradient plasticity theory, the transformation strain has no significant impact on the overall strengthening. The strengthening is essentially coming from the composite effect with a marked inclusion size effect resulting from the appearance during deformation of new boundaries constraining the plastic flow. The three parameters version of the Fleck–Hutchinson strain gradient plasticity theory is used here in order to better capture the effect of the plastic strain gradients resulting from the transformation strain. The three parameters theory incorporates separately the rotational and extensional gradients in the formulation, which leads to a significant influence of the shear component of the transformation strain, not captured by the single-parameter theory. When the size of the austenitic inclusions decreases, the overall strengthening increases due to a combined size dependent effect of the transformation strain and of the evolving composite structure. A parametric study is proposed and discussed in the light of experimental evidences giving indications on the optimization of the microstructure of TRIP-assisted multi-phase steels.  相似文献   

6.
In the small deformation range, we consider crystal and isotropic “higher-order” theories of strain gradient plasticity, in which two different types of size effects are accounted for: (i) that dissipative, entering the model through the definition of an effective measure of plastic deformation peculiar of the isotropic hardening function and (ii) that energetic, included by defining the defect energy (i.e., a function of Nye's dislocation density tensor added to the free energy; see, e.g., [Gurtin, M.E., 2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32]). In order to compare the two modellings, we recast both of them into a unified deformation theory framework and apply them to a simple boundary value problem for which we can exploit the Γ-convergence results of [Bardella, L., Giacomini, A., 2008. Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J. Mech. Phys. Solids 56 (9), 2906–2934], in which the crystal model is made isotropic by imposing that any direction be a possible slip system. We show that the isotropic modelling can satisfactorily approximate the behaviour described by the isotropic limit obtained from the crystal modelling if the former constitutively involves the plastic spin, as in the theory put forward in Section 12 of [Gurtin, M.E., 2004. A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J. Mech. Phys. Solids 52, 2545–2568]. The analysis suggests a criterium for choosing the material parameter governing the plastic spin dependence into the relevant Gurtin model.  相似文献   

7.
A plane strain study of wedge indentation of a thin film on a substrate is performed. The film is modelled with the strain gradient plasticity theory by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406] and analysed using finite element simulations. Several trends that have been experimentally observed elsewhere are captured in the predictions of the mechanical behaviour of the thin film. Such trends include increased hardness at shallow depths due to gradient effects as well as increased hardness at larger depths due to the influence of the substrate. In between, a plateau is found which is observed to scale linearly with the material length scale parameter. It is shown that the degree of hardening of the material has a strong influence on the substrate effect, where a high hardening modulus gives a larger impact on this effect. Furthermore, pile-up deformation dominated by plasticity at small values of the internal length scale parameter is turned into sink-in deformation where plasticity is suppressed for larger values of the length scale parameter. Finally, it is demonstrated that the effect of substrate compliance has a significant effect on the hardness predictions if the effective stiffness of the substrate is of the same order as the stiffness of the film.  相似文献   

8.
The mechanical properties of film–substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating–substrate combinations. Surf. Coat. Technol., 191, 25–32), in which Al–Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1–0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film–substrate nano-indentation experiments.  相似文献   

9.
A Phenomenological Mesoscopic Field Dislocation Mechanics (PMFDM) model is developed, extending continuum plasticity theory for studying initial-boundary value problems of small-scale plasticity. PMFDM results from an elementary space-time averaging of the equations of Field Dislocation Mechanics (FDM), followed by a closure assumption from any strain-gradient plasticity model that attempts to account for effects of geometrically necessary dislocations (GNDs) only in work hardening. The specific lower-order gradient plasticity model chosen to substantiate this work requires one additional material parameter compared to its conventional continuum plasticity counterpart. The further addition of dislocation mechanics requires no additional material parameters. The model (a) retains the constitutive dependence of the free-energy only on elastic strain as in conventional continuum plasticity with no explicit dependence on dislocation density, (b) does not require higher-order stresses, and (c) does not require a constitutive specification of a ‘back-stress’ in the expression for average dislocation velocity/plastic strain rate. However, long-range stress effects of average dislocation distributions are predicted by the model in a mechanistically rigorous sense. Plausible boundary conditions (with obvious implication for corresponding interface conditions) are discussed in some detail from a physical point of view. Energetic and dissipative aspects of the model are also discussed. The developed framework is a continuous-time model of averaged dislocation plasticity, without having to rely on the notion of incremental work functions, their convexity properties, or their minimization. The tangent modulus relating stress rate and total strain rate in the model is the positive-definite tensor of linear elasticity, and this is not an impediment to the development of idealized microstructure in the theory and computations, even when such a convexity property is preserved in a computational scheme. A model of finite deformation, mesoscopic single crystal plasticity is also presented, motivated by the above considerations.Lower-order gradient plasticity appears as a constitutive limit of PMFDM, and the development suggests a plausible boundary condition on the plastic strain rate for this limit that is appropriate for the modeling of constrained plastic flow in three-dimensional situations.  相似文献   

10.
Biaxial strain and pure shear of a thin film are analysed using a strain gradient plasticity theory presented by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406]. Constitutive equations are formulated based on the assumption that the free energy only depends on the elastic strain and that the dissipation is influenced by the plastic strain gradients. The three material length scale parameters controlling the gradient effects in a general case are here represented by a single one. Boundary conditions for plastic strains are formulated in terms of a surface energy that represents dislocation buildup at an elastic/plastic interface. This implies constrained plastic flow at the interface and it enables the simulation of interfaces with different constitutive properties. The surface energy is also controlled by a single length scale parameter, which together with the material length scale defines a particular material.Numerical results reveal that a boundary layer is developed in the film for both biaxial and shear loading, giving rise to size effects. The size effects are strongly connected to the buildup of surface energy at the interface. If the interface length scale is small, the size effect vanishes. For a stiffer interface, corresponding to a non-vanishing surface energy at the interface, the yield strength is found to scale with the inverse of film thickness.Numerical predictions by the theory are compared to different experimental data and to dislocation dynamics simulations. Estimates of material length scale parameters are presented.  相似文献   

11.
In this work, the effect of the material microstructural interface between two materials (i.e., grain boundary in polycrystalls) is adopted into a thermodynamic-based higher order strain gradient plasticity framework. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. The theory is developed based on the decomposition of the thermodynamic conjugate forces into energetic and dissipative counterparts which provides the constitutive equations to have both energetic and dissipative gradient length scales for the grain and grain boundary. The numerical solution for the proposed framework is also presented here within the finite element context. The material parameters of the gradient framework are also calibrated using an extensive set of micro-scale experimental measurements of thin metal films over a wide range of size and temperature of the samples.  相似文献   

12.
Following a previous paper by the author [Strain gradient plasticity, strengthening effects and plastic limit analysis, Int. J. Solids Struct. 47 (2010) 100–112], a nonconventional plastic limit analysis for a particular class of micron scale structures as, typically, thin foils in bending and thin wires in torsion, is here addressed. An idealized rigid-perfectly plastic material is considered, which is featured by a strengthening potential degree-one homogeneous function of the effective plastic strain and its spatial gradient. The nonlocal (gradient) nature of the material resides in the inherent strengthening law, whereby the yield strength is related to the effective plastic strain through a second order PDE with associated higher order boundary conditions. The peculiarity of the considered structures stems from their geometry and loading conditions, which dictate the shape of the collapse mechanism and make the higher order boundary conditions on the (microscopically) free boundary be accommodated by means of a boundary singularity mechanism. This consists in the formation of thin boundary layers with unbounded stresses, but bounded stress resultants which —together with the regular bulk stresses— contribute to the value of the collapse load. Closed-form solutions are provided for thin foils in pure bending and thin wires in pure torsion, and in particular the limit bending and torque moments are given as functions of an adimensionalized internal length parameter.  相似文献   

13.
SIZE EFFECT AND GEOMETRICAL EFFECT OF SOLIDS IN MICRO—INDENTATION TEST   总被引:2,自引:2,他引:2  
Micro-indentation tests at scales of the order of sub-micron show that the measured hardness increases strongly with decreasing indent depth or indent size,which is frequently referred to as the size effect.At the same time,at micron or sub-micron scale,another effect,which is referred to as the geometrical size effects such as crystal grain size effect,thin flim thickness effect,etc.,also influences the measured material hardness.However,the trends are at odds with the size-independence implied by the conventional elastic-plastic theory.In the present research,the strain gradient plasticity theory(Fleck and Hutchinson)is used to model the composition effects(size effect and geometrical effect) for polycrystal material and metal thin film/ceramic substrate systems when materials undergo micro-indenting.The phenomena of the “pile-up“ and “sink-in“ apeared in the indentation test for the polycrystal materials are also discussed.Meanwhile,the micro-indentation experiments for the polycrystal Al and for the Ti/Si3N4 thin film/substrate system are carried out.By comparing the theoretical predictions with experimental measuremtns.the values and the variation trends of the micro-scale parameter included in the strain gradient plasticity theory are predicted.  相似文献   

14.
Microbending experiments of pure aluminum show that the springback angles increase with the decrease of foil thickness, which indicates obvious size effects and attributes to plastic strain gradient hardening. Then a constitutive model, taking into accounts both plastic strain and plastic strain gradient hardening, is proposed to analyze the microbending process of thin foil. The model is based on the relationship between shear yield stress and dislocation density, in which the material intrinsic length is related to material properties and average grain numbers along the characteristic scale direction of part. It is adopted in analytical model to calculate the non-dimensional bending moment and predict the springback angle after microbending. It is confirmed that the predictions by the proposed hardening model agree well with the experimental data, while those predicted by the classical plasticity model cannot capture such size effects. The contribution of plastic strain gradient increases with the decrease of foil thickness and is independent on the bending angle.  相似文献   

15.
“To what extent do plastic strain gradients affect the strengthening resulting from the transformation of small metastable inclusions into hard inclusions within a plastically deforming matrix?” is the central question addressed here. Though general in the approach, the focus is on the behavior of TRIP-assisted multiphase steels. A two-dimensional embedded cell model of a simplified microstructure composed of a single metastable austenitic inclusion surrounded by a soft ferritic matrix is considered. The cell is inserted in a large homogenized medium. The transformation of a fraction of the austenite into a hard martensite plate is simulated, accounting for a transformation strain, and leading to complex elastic and plastic accommodation. The size of a transforming plate in real multiphase steels is typically between 0.1 and 2 μm, a range of size in which plastic strain gradient effects are expected to play a major role. The single parameter version of the Fleck–Hutchinson strain gradient plasticity theory is used to describe the plasticity in the austenite, ferrite and martensite phases. The higher order boundary conditions imposed on the plastic flow have a large impact on the predicted strengthening. Using realistic values of the intrinsic length parameter setting the scale at which the gradients effects have an influence leads to a noticeable increase of the strengthening on top of the increase due to the transformation of a volume fraction of the retained austenite. The geometrical parameters such as the volume fraction of retained austenite and of the transforming zone also bring significant strengthening. Strain gradient effects also significantly affect the stress state inside the martensite plate during and after transformation with a potential impact on the damage resistance of these steels.  相似文献   

16.
There exist two frameworks of strain gradient plasticity theories to model size effects observed at the micron and sub-micron scales in experiments. The first framework involves the higher-order stress and therefore requires extra boundary conditions, such as the theory of mechanism-based strain gradient (MSG) plasticity [J Mech Phys Solids 47 (1999) 1239; J Mech Phys Solids 48 (2000) 99; J Mater Res 15 (2000) 1786] established from the Taylor dislocation model. The other framework does not involve the higher-order stress, and the strain gradient effect come into play via the incremental plastic moduli. A conventional theory of mechanism-based strain gradient plasticity is established in this paper. It is also based on the Taylor dislocation model, but it does not involve the higher-order stress and therefore falls into the second strain gradient plasticity framework that preserves the structure of conventional plasticity theories. The plastic strain gradient appears only in the constitutive model, and the equilibrium equations and boundary conditions are the same as the conventional continuum theories. It is shown that the difference between this theory and the higher-order MSG plasticity theory based on the same dislocation model is only significant within a thin boundary layer of the solid.  相似文献   

17.
An expanding cavity model (ECM) for determining indentation hardness of elastic strain-hardening plastic materials is developed. The derivation is based on a strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic power-law hardening material. Closed-form formulas are provided for both conical and spherical indentations. The indentation radius enters these formulas with its own dimensional identity, unlike that in classical plasticity based ECMs where indentation geometrical parameters appear only in non-dimensional forms. As a result, the newly developed ECM can capture the indentation size effect. The formulas explicitly show that indentation hardness depends on Young’s modulus, yield stress, strain-hardening exponent and strain gradient coefficient of the indented material as well as on the geometry of the indenter. The new model reduces to existing classical plasticity based ECMs (including Johnson’s ECM for elastic–perfectly plastic materials) when the strain gradient effect is not considered. The numerical results obtained using the newly developed model reveal that the hardness is indeed indentation size dependent when the indentation radius is very small: the smaller the indentation, the larger the hardness. Also, the indentation hardness is seen to increase with the Young’s modulus and strain-hardening level of the indented material for both conical and spherical indentations. The strain-hardening effect on the hardness is observed to be significant for materials having strong strain-hardening characteristics. In addition, it is found that the indentation hardness increases with decreasing cone angle of the conical indenter or decreasing radius of the spherical indenter. These trends agree with existing experimental observations and model predictions.  相似文献   

18.
Strain-gradient plasticity theories are reviewed in which some measure of the plastic strain rate is treated as an independent kinematic variable. Dislocation arguments are invoked in order to provide a physical basis for the hardening at interfaces. A phenomenological, flow theory version of gradient plasticity is constructed in which stress measures, work-conjugate to plastic strain and its gradient, satisfy a yield condition. Plastic work is also done at internal interfaces and a yield surface is postulated for the work-conjugate stress quantities at the interface. Thereby, the theory has the potential to account for grain size effects in polycrystals. Both the bulk and interfacial stresses are taken to be dissipative in nature and due attention is paid to ensure that positive plastic work is done. It is shown that the mathematical structure of the elasto-plastic strain-gradient theory has similarities to conventional rigid-plasticity theory. Uniqueness and extremum principles are constructed for the solution of boundary value problems.  相似文献   

19.
考虑压头曲率半径和应变梯度的微压痕分析   总被引:2,自引:0,他引:2  
在压头尖端曲率半径取100nm的前提下,采用Chen和Wang的应变梯度理论,对微压痕实验进行了系统的数值分析. 首先通过拟合载荷-位移实验曲线的后半段来确定材料的屈服应力和幂硬化指数值,然后用有限元方法数值模拟压痕实验,并将计算得到的整段载荷-位移曲线及硬度-位移曲线和实验结果进行了比较. 结果表明应变梯度理论所预测的计算结果和实验结果很好地符合,包括压痕深度在亚微米和微米范围内的整段曲线.  相似文献   

20.
A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite element framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz (2004) [Journal of the Mechanics and Physics of Solids 52, 2431–2454] of the strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245–2271]. The formulation is based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plasticity theory in the absence of viscous effects. The numerical implementation uses increments of the effective plastic strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model, results are presented for materials containing either voids or rigid inclusions. It is shown how the model predicts increased overall yield strength, as compared to conventional predictions, when voids or inclusions are in the micron range. Furthermore, it is illustrated how the higher order boundary conditions at the interface between inclusions and matrix material are important to the overall yield strength as well as the material hardening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号