首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionic conductivity of PVC–ENR–LiClO4 (PVC, polyvinyl chloride; ENR, epoxidized natural rubber) as a function of LiClO4 concentration, ENR concentration, temperature, and radiation dose of electron beam cross-linking has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivities were measured using the impedance spectroscopy technique. It was observed that the relationship between the concentration of salt, as well as temperature, and conductivity were linear. The electrolyte conductivity increases with ENR concentration. This relationship was discussed using the number of charge carrier theory. The conductivity–temperature behaviour of the electrolyte is Arrhenian. The conductivity also varies with the radiation dose of the electron beam cross-linking. The highest room temperature conductivity of the electrolyte of 8.5 × 10−7 S/cm was obtained at 30% by weight of LiClO4. The activation energy, E a and pre-exponential factor, σ o, are 1.4 × 10−2 eV and 1.5 × 10−11 S/cm, respectively.  相似文献   

2.
Optical absorption in MnIn2S4 single crystals has been studied. Direct and indirect optical transitions are found to occur at photon energies of 1.90?C2.16 eV in the temperature range of 80?C342 K. The temperature dependence of the band gap is determined; its temperature coefficients E gd and E gi are found to be ?4.84 × 10?4 and ?6.33 × 10?4 eV/K, respectively. The electron-phonon interaction is the main mechanism of the temperature shift of the intrinsic-absorption edge. MnIn2S4 single crystals exhibit anisotropy in polarized light at the absorption edge in the temperature range of 90?C190 K; the nature of this anisotropy is explained.  相似文献   

3.
LiCoO2 thin films were prepared by electron beam evaporation technique using LiCoO2 target with Li/Co ratio 1.1 in an oxygen partial pressure of 5 × 10−4 mbar. The films prepared at substrate temperature T s < 573 K were amorphous in nature, and the films prepared at T s > 573 K exhibited well defined (104), (101), and (003) peaks among which the (104) orientation predominates. The X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) data revealed that the films prepared in the substrate temperature range 673–773 K are nearly stoichiometric. The grain size increases with an increase of substrate temperature. The Co–eg absorption bands, are empty and their peak position lies at around 1.7 eV above the top to the Co–t2g bands. The fundamental absorption edge was observed at 2.32 eV. The films annealed at 1,023 K in a controlled oxygen environment exhibit (104) out plane texture with large grains. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006  相似文献   

4.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

5.
The Tl2S compound was prepared in a single crystal form using a special local technique, and the obtained crystals were analysed by X-ray diffraction. For the resultant crystals, the electrical properties (electrical conductivity and Hall effect) and steady-state photoconductivity were elucidated in this work. The electrical measurements extend from 170 to 430 K, where it was found that σ = 8.82 × 10−5 Sm−1 when current flow direction makes right angle to the cleavage plane of the crystals. In the same range of temperatures, it was found that σ = 4.73 × 10−5 Sm−1 when the current flow is parallel to the cleavage plane. In line with the investigated range of temperatures, the widths of the band gaps were calculated and discussed as also the results of the electrical conductivity and Hall effect measurements. In addition, the anisotropy of the electrical conductivity (σ /σ ) for the obtained crystals was also studied in this work. Finally the photosensitivity was calculated for different levels of illumination as a result of the photoconductivity measurements, which showed that the recombination process in Tl2S single crystals is a monomolecular process.   相似文献   

6.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

7.
The temperature dependences of the electrical conductivity and the permittivity of TlInSe2 and TlGaTe2 crystals unirradiated and irradiated with 4-MeV electrons at a doze of 1016 cm−2 have been investigated. It has been established that electron irradiation leads to a decrease in the electrical conductivity σ and the permittivity ɛ over the entire temperature range under study (90–320 K). It has been revealed that the TlInSe2 and TlGaTe2 single crystals undergo a sequence of phase transitions characteristic of crystals of this type, which manifest themselves as anomalies in the temperature dependences σ = f(T) and ɛ = f(T). Electron irradiation at a doze of 1016 cm−2 does not affect the phase transition temperatures of the crystals under investigation.  相似文献   

8.
Magnetic and kinetic properties as well as transmission and absorption spectra of Hg 1−x−y Mn x Fe ySe (0.09 ≤ x ≤ 0.099 and 0.001 ≤ y ≤ 0.01) crystals are investigated at H ≈ 0.5–6 kOe in the temperature range T = 77–300 K. The band parameters are determined on the basis of experimental data. It is found that in the crystals under study at T ≈ 300 K, electron scattering by polar optical phonons dominates, direct optical band-to-band transitions occur, and replacement of a part of Mn atoms by Fe for x + y = 0.1 results in an increase in Eg op with Fe content. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 35–39, March, 2007.  相似文献   

9.
R Bharati  R Shanker  R A Singh 《Pramana》1980,14(6):449-454
The temperature dependence of the electrical conductivity, thermoelectric power and dielectric constant of the antiferromagnetic CuWO4 have been studied in the temperature range 300–1000 K. The conductivity results can be summarised by the equations σI=6.31 × 10−3 exp (−0.29 eV/kT) ohm−1 cm−1 in the temperature range 300–600 K and σII=3.16 × 105 exp (−1.48 eV/kT) ohm−1 cm−1 between 600 K and 1000 K. The thermoelectric power can be expressed byθ=[− 1.25 (103/T) + 3.9] mV/K. Initially dielectric constant increases slowly but for high temperatures its increase is fast.  相似文献   

10.
Spectral dependences of the relative permittivity ɛ = ɛ1iɛ2 of a uniaxial weak ferromagnet FeBO3 are measured for two principal polarizations in the energy range 0.6–5.6 eV. The positions have been determined for the charge-transfer transitions that make the main contribution to absorption above the bandgap and determine the refractive-index dispersion below the bandgap. The isotropic magnetic contribution to the refractive index has been detected by studying the temperature dependence of the refractive index in the range 100–700 K; its value (≈2 × 10−2) is found to be record high for magnetic dielectrics. The energy shift of the effective oscillator, which characterizes the shift of the positions of the charge-transfer transitions due to magnetic ordering, is determined from these data within the framework of a single-oscillator model. The value of the exchange striction in FeBO3 is determined from optical measurements.  相似文献   

11.
The anisotropy of the optical properties of a single crystal of the hexagonal manganite HoMnO3 has been investigated by spectroscopic ellipsometry in the spectral range 0.6–5.0 eV. It has been demonstrated that the optical absorption edge for the polarization Ec is determined by the intense narrow transition O(2p) → Mn(3d) centered at 1.5 eV, whereas this transition for the polarization Ec is strongly suppressed and shifted toward higher energies by 0.2 eV. It has been revealed that, at the temperature T = 293 K, the spectra for both polarizations Ec and Ec exhibit a broad absorption band centered at ∼2.4 eV, which was earlier observed in nonlinear spectra during optical second harmonic generation.  相似文献   

12.
The lattice parameters of CdF2 andβ-PbF2 have been determined over the temperature range 300–670 K. The coefficient of expansion at room temperature is 21·3 × 10−6 K−1 and 25·4 × 10−6 K−1 for CdF2 and PbF2 respectively and it increases linearly with temperature over the range of temperature covered. The Grüneisen parameter decreases with temperature in both the crystals.  相似文献   

13.
We have studied the spectral and kinetic characteristics of activated photo- and cathodoluminescence of LiF-O and LiF-WO3 crystals in the spectral range of 3.6–1.6 eV using methods of pulsed spectrometry with nanosecond time resolution in the temperature range of 15–300 K and in the range of ionizing radiation dose absorbed by crystals of 102−2 × 103 Gy.  相似文献   

14.
Several weak absorption bands have been observed in the optical absorption spectra of pure and rare-earth-doped YAl3(BO3)4 single crystals in the 3350– 3650 cm−1 wave number region. Two of them, peaking at about 3377 cm−1 and 3580 cm−1 in the 8 K spectra, appear in most of the samples. They are tentatively attributed to the stretching mode of OH ions incorporated in the crystal during the growth. An additional absorption band at about 5250 cm−1 at 8 K has also been detected in almost all samples. The temperature and polarization dependences of these bands, and their possible origin, are discussed.  相似文献   

15.
The efficiency of formation and time evolution of radiation-induced structural defects and pulsed luminescence in KPb2Cl5 crystals under the action of a single electron pulse (E = 250 keV, τ = 20 ns) have been investigated. The spectra (1.1–3.8 eV) and relaxation kinetics (time interval 5 × 10?8?5 s) of transient optical absorption and the pulsed cathodoluminescence spectra and decay kinetics (1.4–3.1 eV) have been measured in the temperature range 80–300 K. It is revealed that the induced optical density and its time evolution depend strongly on temperature, and the absorption relaxation time contains several components and reaches several seconds at T = 300 K. The decay kinetics of transient absorption and pulsed cathodoluminescence kinetics have different orders and are controlled by different relaxation processes.  相似文献   

16.
The anisotropy of the ionic conductivity and permittivity of (1) BaR2F8 (R=rare earth element) single crystals with monoclinic BaTm2F8 structure and of (2) (β-YF3 structured) rare earth trifluorides is studied. Single crystals, eutectic composites and ceramics are investigated in a broad temperature range. In the monoclinic BaR2F8 crystals, a pronounced anisotropy of the ionic conductivity and a slight anisotropy of the permittivity are found. The fastest ionic transport with the lowest activation energy (0.563 eV) and the highest value of the permittivity are observed along thea axis. The temperature dependencies of the fluoride ion conductivities of various orthorhombic rare earth trifluorides differ only slightly from one another. For the bulky single crystals, the conductivity at 500 °C and the conduction activation enthalpy are equal to 1.1(4)×10−5 S/cm and 0.75(3) eV, respectively. The ionic conductivity is almost isotropic, but the anisotropy of the permittivity is significant. For the fluorides of both structural types, plausible conduction mechanisms are proposed, networks of most probable conduction paths are presented and the origin of the observed anisotropy of the ionic conductivity is elucidated. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

17.
The spectra of the conductivity and dielectric constant of La1.87Sr0.13CuO4 cuprate have been directly measured in the frequency range of 0.3 to 1.2 THz (10–40 cm−1) and the temperature range of 5 to 300 K in the E | c polarization (the electric field vector of radiation is perpendicular to the copper-oxygen planes). Excitation has been observed in the superconducting phase, and its nature has been attributed to the transverse optical excitation of the condensate of Cooper pairs, which appears because Josephson junctions between CuO planes are modulated due to in-plane magnetic and charge stripes. Additional quasiparticle absorption of unknown origin has been detected at frequencies below ≈15 cm−1 at liquid helium temperatures.  相似文献   

18.
This paper presents the crystal growth and optical characterization of thulium-doped KLu(WO4)2 (KLuW). Thulium-doped KLuW macrodefect-free monoclinic single crystals (a*×b×c≈10×7×15 mm3) were grown by the top seeded solution growth slow cooling method with dopant concentrations of 0.5%, 1%, 3% and 5% atomic in solution. The evolution of unit cell parameters in relation with thulium doping was studied by X-ray powder patterns. Thulium energy levels in the KLuW host were determined by 6 K polarized optical absorption. The Judd–Ofelt parameters determined were Ω2=9.01×10-20 cm2, Ω4=1.36×10-20 cm2 and Ω6=1.43×10-20 cm2. The maximum emission cross section for the 1.9 μm emission, calculated by Füchtbauer–Ladenburg method, is 1.75×10-20 cm2, at 1845 nm with E//Nm. The intensity decay time from the emitting levels 1 G 4 and 3 H 4 levels in relation to the concentration were studied. For the lowest thulium concentration, the measured decay times from 1 G 4 and 3 H 4 emitting levels are 140 μs and 230 μs, respectively. PACS 42.55.Rz; 78.20.-e; 78.55.-m  相似文献   

19.
Acoustic relaxation in undeformed and plastically deformed CsI single crystal has been studied using the composite oscillator technique at frequencies (1–7) × 105 Hz in the temperature range 2–15 K. Plastic deformation leads to appearance of an internal friction peak localized in the temperature interval 4–5 K. It is shown that the peak shifts towards higher temperatures when increasing the vibration frequency and corresponds to a thermally activated relaxation process with very low values of the activation energyU ≈ 1.9×10−3 eV and the attack frequencyν 0≈6.7 × 103 s−1. Interaction of sound with dislocation kinks migrating in the second order Peierls relief is considered as a possible mechanism of the peak. Research was made possible in part by Grants U9T000 and U9T200 from the International Science Foundation and supported in part by the Fundamental Research Foundation of Ukraine (Project 2.4/156 “Bion”).  相似文献   

20.
The spectra of complex permittivity of a Ba2Mg2Fe12O22 single crystal belonging to the family of Y-type hexaferrites have been measured over a wide temperature range (10–300 K) with the aim of determining the dynamic parameters of the phonon and magnetic subsystems in the terahertz and infrared frequency ranges (3–4500 cm−1). A factor-group analysis of the vibrational modes has been performed, and the results obtained have been compared with the experimentally observed resonances. The oscillator parameters of all nineteen phonon modes of E u symmetry, which are allowed by the symmetry of the Ba2Mg2Fe12O22 crystal lattice, have been calculated. It has been found that, at temperatures below 195 and 50 K, the spectral response exhibits new absorption lines due to magnetic excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号