首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The flow field in a cross-sectional plane of a scaled Beaver DHC aircraft propeller has been measured by means of a stereoscopic PIV setup. Phase-locked measurements are obtained in a rotational frequency range from 18,900 to 21,000 rpm, at a relative Mach number of 0.6 at ¾ propeller radius. The use of an adapted formulation of the momentum equation in differential form for rotating frame of references, integrated with isentropic relations as boundary conditions, allowed to compute the pressure field around the blade and the surface pressure distribution directly from the velocity data in the compressible regime. The procedure, extended to the computation of the aerodynamic lift and drag coefficients by a momentum contour integral approach, proved to be able to couple the aerodynamical loads to the flow field on the moving propeller blade, comparing favorably with a numerical simulation of the entire scaled model. Results are presented for two propeller rotation speeds and three different yawing angles.  相似文献   

2.
旋翼尾流与地面干扰时地面涡现象的研究   总被引:1,自引:0,他引:1  
康宁  孙茂 《力学学报》1998,30(5):615-620
用N-S方程对近地飞行时旋翼尾流与地面干扰时产生的地面涡现象进行了数值计算旋翼对流场的作用由分布在特定区域内的动量源项模拟结果表明,旋翼尾流撞到地面后的卷起和轴向流动的拉伸作用是形成地面涡的原因;地面边界层形成的二次分离涡向地面涡内输入(与尾流所携带的涡量)相反的涡量,而使地面涡保持平衡;地面涡的存在和运动使旋翼附近流场大大改变  相似文献   

3.
In the present study an experimental analysis of the velocity and pressure fields behind a marine propeller, in non-cavitating regime is reported. Particle image velocimetry measurements were performed in phase with the propeller angle, to investigate the evolution of the axial and the radial velocity components, from the blade trailing edge up to two diameters downstream. In phase pressure measurements were performed at four radial and eight longitudinal positions downstream the propeller model at different advance ratios. Pressure data, processed by using slotting techniques, allowed reconstructing the evolution of the pressure field in phase with the reference blade position. In addition, the correlation of the velocity and pressure signals was performed. The analysis demonstrated that, within the near wake, the tip vortices passage is the most important contribution in generating the pressure field in the propeller flow. The incoming vortex breakdown process causes a strong deformation of the hub vortex far downstream of the slipstream contraction. This process contributes to the pressure generation at the shaft rate frequency.  相似文献   

4.
张庆典  马宏伟  杨益  肖安琪 《力学学报》2022,54(7):1755-1777
平面叶栅气动试验传统上是验证压气机、涡轮的基元性能的主要手段, 近年来国内外研究人员利用平面叶栅开展了大量的流动测量试验, 以揭示叶栅内部复杂流动现象的本质和规律、探索减小叶栅内流动损失的方法. 本文从试验装置、测试技术和研究内容三个方面, 综述了近年来平面叶栅气动试验研究的进展情况. 首先介绍了平面叶栅试验装置的发展及提高平面叶栅试验段流场品质的措施; 其次介绍了叶栅气动试验采用的部分流场测试技术, 包括叶片表面压力场、叶片表面温度场、内流速度场及流场可视化等测试技术, 分析了这些测试技术的进展和存在的问题; 然后梳理了近年来平面叶栅试验研究的相关科学问题及进展, 包括跨音速叶栅中的激波研究, 叶顶间隙泄漏流动研究, 叶型优化研究, 多尺度非定常旋涡结构研究, 振动环境下叶栅流场研究等; 最后对平面叶栅气动试验研究方向进行了展望. 通过了解叶栅内复杂流动现象及本质, 为进一步探索和提高压气机、涡轮的气动性能提供技术支撑.   相似文献   

5.
A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.  相似文献   

6.
Field experiments are performed on a two-bladed 33 kW horizontal-axis wind turbine (HAWT). The pressures are measured with 191 pressure sensors positioned around the surfaces of seven spanwise section airfoils on one of the two blades. Three-dimensional (3D) and two-dimensional (2D) numerical simulations are performed, respectively, on the rotor and the seven airfoils of the blade. The results are compared with the experimental results of the pressure distribution on the seven airfoils and the lift coefficients. The 3D rotational effect on the blade aerodynamic characteristics is then studied with a numerical approach. Finally, some conclusions are drawn as follows. From the tip to the root of the blade, the experimental differential pressure of the blade section airfoil increases at first and then decreases gradually. The calculated 3D result of the pressure distribution on the blade surface is closer to that of the experiment than the 2D result. The 3D rotational effect has a significant impact on the blade surface flow and the aerodynamic load, leading to an increase of the differential pressure on the airfoils and their lift coefficient than that with the 2D one because of the stall delay. The influence of the 3D rotational effect on the wind turbine blade especially takes place on the sections with flow separation.  相似文献   

7.
An experimental analysis using three-dimensional laser Dopplervelocimetery (LDV) measurements and computational analysis usingthe Reynolds stress model of the commercial code, FLUENT, wereconducted to give a clear understanding on the structure of thetip leakage flow in a forward-swept axial-flow fan operating atthe peak efficiency condition, and to emphasize the necessity ofusing an anisotropic turbulence model for the accurate predictionof the tip leakage vortex. The rolling-up of the tip leakage flowwas initiated near the position of the maximum static pressuredifference, which was located at approximately 12% axial tipchord downstream from the leading edge of the blade, and developedalong the centerline of the pressure trough on the casing. Areverse flow between the blade tip and the casing due to the tipleakage vortex acted as a blockage on the through-flow. As aresult, high momentum flux was observed below the tip leakagevortex. As the tip leakage vortex proceeded to the aft part of theblade passage, the strength of the tip leakage vortex decreaseddue to the strong interaction with the through-flow and the casingboundary layer, and the diffusion of the tip leakage vortex byhigh turbulence. Through the comparative study of turbulencemodels, it was clearly shown that an anisotropic turbulence model,e.g., Reynolds stress model, should be used to predict reasonablyan anisotropic nature of the turbulent flow fields inside the tipleakage vortex. In comparison with LDV measurement data, thecomputed results predicted the complex viscous flow patternsinside the tip region in a reliable level.  相似文献   

8.
Paper and board are often coated at high speeds with a mineral-based aqueous suspension in order to improve their printing properties. This suspension is usually called coating colour. The flow behaviour of the coating colour in the cavity of the short dwell coater (SDC) and in the vicinity of the blade tip when paper is coated with a stiff blade has been analysed using the finite element method. The models used to simulate the flow incorporated free surfaces and shear-thinning colours. The Newtonian case was in some cases also included in the modelling. The viscosity level and the shear-thinning character of the coating colour had a significant influence on the flow in the SDC cavity, although the overall behaviour was to a large extent governed by the speed of the coater. The pressure distribution along the paper surface in the SDC cavity was also analysed.In agreement with earlier reported results, increasing the machine speed raised the pressure level in the colour close to the blade tip. The rheological properties of the coating colour also affected the flow field and the pressure distribution in this region; e.g. it was found here that a colour with a high viscosity level at low shear rates developed a high pressure level close to the blade tip. The most interesting result revealed by the analysis was that changes in the configuration close to the blade tip (converging flow between the blade tip and the paper and compression of the substrate under the blade tip) and boundary conditions at the blade tip surface had a very significant effect on the pressure distribution. The predictions of the numerical simulation were to some extent compared with experience from practical coating trials.  相似文献   

9.
This contribution is aimed at summarizing the effort taken to apply stereoscopic PIV (SPIV) measurements in the tip clearance of a transonic compressor rotor equipped with a casing treatment. A light sheet probe was placed downstream of the stator and aligned to pass the light sheet through a stator passage into the blade tip clearance of the rotor. A setup with three cameras has been used in order to record the entire 2C velocity field and the smaller area of 3C field of view at the same time instance for comparison with earlier 2C PIV results. A homogeneous seeding distribution was achieved by means of a smoke generator. The main emphasis of the SPIV measurement was to establish a data set with high spatial resolution close to the compressor casing, where the aerodynamic effects of a CT are known to be strong. The paper will discuss some major aspects of the utilized PIV data processing and point out a variety of frequently underestimated error sources that influence the overall quality of the recovered data in spite of the fact that the individual PIV recordings seemed to be of very good quality. Thus, the authors will not focus on the PIV results and related interpretation of the flow field, but on the optimization and procedures applied during setup of the experiment and data processing, respectively.  相似文献   

10.
一种风力机气动计算的全自由涡尾迹模型   总被引:1,自引:0,他引:1  
采用全自由方式建立风力机尾流场的涡尾迹模型,引入“虚拟周期”的概念,并发展一种自适应松弛因子方法,从而改善了自由尾迹迭代的稳定性,提高了迭代收敛速度。利用建立的自由涡尾迹模型,计算了风力机叶片的尾流场结构、气动性能及叶片载荷,并与实验结果进行了对比分析。结果表明,尖速比越大,自适应松弛因子方法对缩小模型计算时间越有效;全自由涡尾迹模型能准确给出风力机尾流场的结构,包括尾迹的扩张以及叶尖涡和叶根涡的产生、发展和耗散的过程,风轮扭矩与实验数据吻合;叶片载荷分布的计算结果在低风速下与实验值基本一致,但是在大风速下差别较大,说明需要一个准确的失速模型。  相似文献   

11.
基于近似技术的涡轮叶片气动优化设计   总被引:4,自引:1,他引:3  
根据五次多项式方法进行三维涡轮叶片的参数化建模,采用N-S方程和湍流模型进行三维流场分析计算,以K-S函数法作为优化方法,利用近似技术加速循环优化速度,建立了一种基于近似技术的涡轮叶片的气动优化方法。将气动效率和总压比作为目标函数,对涡轮叶片进行多目标气动优化、形状优化。算例表明本文提出的涡轮叶片优化设计方法是有效的。  相似文献   

12.
A computational method for flutter prediction of turbomachinery cascades is presented. The flow through multiple blade passages is calculated using a time-domain approach with coupled aerodynamic and structural models. The unsteady Euler/Navier-Stokes equations are solved in quasi-three-dimensions using a second-order implicit scheme with dual time-stepping and a multigrid method. A structural model for the blades with bending and torsion degrees of freedom is integrated in time together with the flow field. Information between structural and aerodynamic models is exchanged until convergence in each real-time step. Computational results for a cascade are presented and compared with those obtained by the conventional energy method and with experimental and numerical data by other authors. Significant differences are found between the coupled and uncoupled methods at low mass ratios. A transonic test case with strong nonlinear phenomena is investigated with the fluid-structure coupled method. Results for inviscid flow are compared with results of Navier-Stokes computations.  相似文献   

13.
The aerodynamic behavior of a vertical axis wind turbine (VAWT) is analyzed by means of 2D particle image velocimetry (PIV), focusing on the development of dynamic stall at different tip speed ratios. The VAWT has an unsteady aerodynamic behavior due to the variation with the azimuth angle θ of the blade’s sections’ angle of attack, perceived velocity and Reynolds number. The phenomenon of dynamic stall is then an inherent effect of the operation of a VAWT at low tip speed ratios, impacting both loads and power. The present work is driven by the need to understand this phenomenon, by visualizing and quantifying it, and to create a database for model validation. The experimental method uses PIV to visualize the development of the flow over the suction side of the airfoil for two different reference Reynolds numbers and three tip speed ratios in the operational regime of a small urban wind turbine. The field-of-view of the experiment covers the entire rotation of the blade and almost the entire rotor area. The analysis describes the evolution of the flow around the airfoil and in the rotor area, with special focus on the leading edge separation vortex and trailing edge shed vorticity development. The method also allows the quantification of the flow, both the velocity field and the vorticity/circulation (only the results of the vorticity/circulation distribution are presented), in terms of the phase locked average and the random component.  相似文献   

14.
This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.  相似文献   

15.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

16.
The effects of propeller tip vane on flow-field behavior   总被引:2,自引:0,他引:2  
 This paper investigates the effects of attaching a tip vane to a propeller blade on the development and propagation of a tip vortex. The study employed a two-bladed propeller operating with and without a tip vane. Evaluation of the tip vortex was studied by using both smoke-wire flow visualization, hot wire anemometer, and strain gauge load-cell techniques. The mean velocity distributions and the velocity unsteadiness data as well as thrust, input power and efficiencies were obtained. Experiments were repeated at various rotating speeds ranging from 2000 to 5000 rpm. Received: 26 November 1995/Accepted: 11 April 1997  相似文献   

17.
Tip gap height effects on aerodynamic losses downstream of a cavity squealer tip have been investigated in a linear turbine cascade for power generation, in comparison with plane tip results. Three-dimensional flow fields are measured with a five-hole probe for tip gap height-to-chord ratios of h/c = 0.5, 1.0, 1.5 and 2.0%. The cavity squealer tip has a full length squealer with its rim height-to-chord ratio of 5.51%. For a fixed value of h/c, the tip leakage vortex for the cavity squealer tip is always weaker than that for the plane tip, and the flow field in the passage vortex region for the cavity squealer tip is less influenced by the tip leakage flow than that for the plane tip. For the cavity squealer tip, there is no appreciable change in local aerodynamic loss with h/c in the passage vortex region, but local aerodynamic loss in the tip leakage vortex region increases with h/c. The roles of the cavity squealer tip in reducing aerodynamic loss in comparison with the plane tip case are twofold: (1) the cavity squealer tip decreases the leakage flow discharge in the region from the leading edge to the mid-chord, which leads to an aerodynamic loss reduction in the passage vortex region and (2) it also decreases the leakage flow discharge downstream of the mid-chord, which results in an aerodynamic loss reduction in the tip leakage vortex region.  相似文献   

18.
Stereo particle image velocimetry measurements focus on the flow structure and turbulence within the tip leakage vortex (TLV) of an axial waterjet pump rotor. Unobstructed optical access to the sample area is achieved by matching the optical refractive index of the transparent pump with that of the fluid. Data obtained in closely spaced planes enable us to reconstruct the 3D TLV structure, including all components of the mean vorticity and strain-rate tensor along with the Reynolds stresses and associated turbulence production rates. The flow in the tip region is highly three-dimensional, and the characteristics of the TLV and leakage flow vary significantly along the blade tip chordwise direction. The TLV starts to roll up along the suction side tip corner of the blade, and it propagates within the passage toward the pressure side of the neighboring blade. A shear layer with increasing length connects the TLV to the blade tip and initially feeds vorticity into it. During initial rollup, the TLV involves entrainment of a few vortex filaments with predominantly circumferential vorticity from the blade tip. Being shed from the blade, these filaments also have high circumferential velocity and appear as swirling jets. The circumferential velocity in the TLV core is also substantially higher than that in the surrounding passage flow, but the velocity peak does not coincide with the point of maximum vorticity. When entrainment of filaments stops in the aft part of the passage, newly forming filaments wrap around the core in helical trajectories. In ensemble-averaged data, these filaments generate a vortical region that surrounds the TLV with vorticity that is perpendicular to that in the vortex core. Turbulence within the TLV is highly anisotropic and spatially non-uniform. Trends can be traced to high turbulent kinetic energy and turbulent shear stresses, e.g., in the shear layer containing the vortex filaments and the contraction region situated along the line where the leakage backflow meets the throughflow, causing separation of the boundary layer at the pump casing. Upon exposure to adverse pressure gradients in the aft part of the passage, at 0.65–0.7 chord fraction in the present conditions, the TLV bursts into a broad turbulent array of widely distributed vortex filaments.  相似文献   

19.
A two-frame PIV (particle image velocimetry) technique was used to investigate the flow characteristics of a complicated propeller wake influenced by a hull wake. As the propeller is significantly affected by the hull wake of a marine vessel, measurements of the propeller wake under the hull wake are certainly needed for more reliable validation of numerical predictions. Velocity field measurements were conducted in a cavitation tunnel with a simulated hull wake. Generally, the hull wake generated by the hull of a marine ship may cause different loading distributions on the propeller blade in both the upper and the lower propeller planes. The unstable propeller wake caused by the ship’s hull was interpreted in terms of turbulent kinetic energy (T KE) to obtain useful information for flow modeling. The unstable or unsteady phenomenon in the upper propeller wake was identified by using the proper orthogonal decomposition (POD) method to characterize the coherent flow structure with turbulent kinetic energy. Strong unsteadiness appeared in the second and higher modes, largely affecting the downstream flow characteristics. The first eigenmode can be used to appropriately identify the tip vortex positions even in the unstable downstream region, which are helpful for establishing reliable wake modeling.  相似文献   

20.
The effect of a casing fence on the tip-leakage flow of an axial flow fan is investigated using large eddy simulation. A fence is attached on the shroud near the trailing edge of an axial flow fan used in an outdoor unit of air conditioner. The Reynolds number is 547,000 based on the blade tip radius and tip velocity. At the design condition, the fan efficiency is increased by the casing fence. The roles of the fence are to block backward leakage flows near the shroud and to weaken the movement of the tip-leakage vortex (TLV) in the azimuthal direction. Also, the fence reduces the double-leakage tip-clearance flow generated at the aft part of the blade tip due to the TLV-blade interaction, reducing the strength of the tip-separation vortex. Consequently, the tip leakage and total pressure losses are reduced, and the efficiency is increased. The pressure fluctuations on the aft part of the blade tip of the pressure surface caused by the TLV-blade interaction are also significantly reduced by the fence, indicating reduction of the noise source. According to the interaction between the fence and backward leakage flow induced by the TLV, the fence significantly and slightly increases the aerodynamic performances at the design and peak efficiency conditions, respectively, but reduces them at an overflow condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号