首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present paper, the commercial CFD code “Fluent” was employed to perform 2-D simulations of an entire process that included the flow around a fixed circular cylinder, the oscillating cylinder (vortex-induced vibration, VIV) and the oscillating cylinder subjected to shape control by a traveling wave wall (TWW) method. The study mainly focused on using the TWW control method to suppress the VIV of an elastically supported circular cylinder with two degrees of freedom at a low Reynolds number of 200. The cross flow (CF) and the inline flow (IL) displacements, the centroid motion trajectories and the lift and drag forces of the cylinder that changed with the frequency ratios were analyzed in detail. The results indicate that a series of small-scale vortices will be formed in the troughs of the traveling wave located on the rear part of the circular cylinder; these vortices can effectively control the flow separation from the cylinder surface, eliminate the oscillating wake and suppress the VIV of the cylinder. A TWW starting at the initial time or at some time halfway through the time interval can significantly suppress the CF and IL vibrations of the cylinder and can remarkably decrease the fluctuations of the lift coefficients and the average values of the drag coefficients; however, it will simultaneously dramatically increase the fluctuations of the drag coefficients.  相似文献   

2.
We use direct numerical simulation (DNS) based on spectral methods to simulate turbulent flow past rigid and flexible cylinders subject to vortex-induced vibrations (VIV). We present comparisons of amplitude, and lift and drag forces, at Reynolds number 1000 for a short and a long cylinder, and we examine differences between a traveling wave response and a standing wave response. The DNS data suggest that the often-used empirical formula proposed by Skop, Griffin & Ramberg in 1977 overpredicts the drag coefficient. We propose an appropriate modification and present preliminary results that indicate that low-dimensional modeling may be an accurate and efficient approach in predicting forces in VIV. Given the lack of any benchmark experiments in VIV currently, the DNS results presented here, both distributions as well as span- and time-averaged quantities, should be helpful to experimentalists and modelers.  相似文献   

3.
We investigate the validity of the independence principle for fixed yawed circular cylinders and free yawed circular rigid cylinders subject to vortex-induced vibrations (VIV) at subcritical Reynolds number using direct numerical simulation (DNS). We compare forces on the cylinder and cylinder responses for different angles of yaw and reduced velocities, and investigate the value of the critical angle of yaw. We also present flow visualizations and examine flow structures corresponding to different angles of yaw and reduced velocities.  相似文献   

4.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder close to a plane boundary are investigated numerically. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the Arbitrary Lagrangian Eulerian (ALE) scheme with a k-ω turbulence model closure. The numerical model is validated against experimental data of VIV of a cylinder in uniform flow and VIV of a cylinder close to a plane boundary at low mass ratios. The numerical results of the vibration mode, vibration amplitude and frequency agree well with the experimental data. VIV of a circular cylinder close to a plane boundary is simulated with a mass ratio of 2.6 and gap ratios of e/D=0.002 and 0.3 (gap ratio is defined as the ratio of gap between the cylinder and the bed (e) to cylinder diameter (D)). Simulations are carried out for reduced velocities ranging from 1 to 15 and Reynolds numbers ranging from 1000 to 15 000. It is found that vortex-induced vibrations occur even if the initial gap ratio is as small as e/D=0.002, although reported research indicated that vortex shedding behind a fixed circular cylinder is suppressed at small gap ratios (e/D<0.3 or 0.2). It was also found that vibration amplitudes are dependant on the bouncing back coefficient when the cylinder hits the plane boundary. Three vortex shedding modes are identified according to the numerical results: (i) single-vortex mode where the vortices are only shed from the top of the cylinder; (ii) vortex-shedding-after-bounce-back mode; (iii) vortex-shedding-before-bounce-back mode. It was found that the vortex shedding mode depends on the reduced velocity.  相似文献   

5.
The present paper deals with suppression of vortex induced vibrations (VIV) by introducing radial water jets from circular openings in the wall of the oscillating cylinder. Overpressure within the water-filled cylinder propels water jets blowing out into the ambient flow as a means to alter the vortex shedding process. This flow will introduce a disturbance that is expected to yield reduced VIV amplitudes. Results are presented from experiments in a towing tank testing a spring-supported cylinder with two straight rows of radial water jets along the the cylinder, located at positions +120° and?120° on the cylinder circumference. A smooth cylinder with no openings is tested for comparison. Direct Numerical Simulations (DNS) have been performed using the Spectral/hp element code Nεκταr. Outflow through openings in the cylinder wall is modeled, and a parameter study is performed where number of jets as well as jet location on the cylinder circumference and jet flow rate are varied.  相似文献   

6.
Two-degree-of-freedom vortex-induced vibrations (VIV) of a circular cylinder with and without two smaller control cylinders are investigated numerically by computational fluid dynamics (CFD) models coupling with a fluid–structure interaction (FSI) computational method. The numerical model is validated against experimental data of VIV of an isolated cylinder in uniform current. The study is aimed to investigate the effect of smaller control cylinders on VIV suppression. The trajectories of cylinder motion, amplitude response, and temporal evolution of vortex shedding and streamlines are obtained by conducting a series of simulations. And the effect of Reynolds number, located angle and rotational rate of small control cylinders are discussed in detail. It is found that placing small cylinders at 45° to the downstream vector can achieve a good suppression effect, but the effect is different at different Re. Rotating control cylinders with a reasonable rotation velocity can further enhance the VIV suppression by injecting enough momentum into the boundary layer of the main cylinder. The best effect is found at Uc=10, which has a 64.56% reduction in the transverse vibration response.  相似文献   

7.
A direct numerical simulation of two-dimensional (2D) flow past an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method had been undertaken. The cylinder motion was modelled by a two degree-of-freedom mass–spring–damper system. The computing code was verified against a benchmark problem in which flow past a stationary circular cylinder is simulated. Then, analyses of vortex-induced vibration (VIV) responses, drag and lift forces and the phase and vortex structures were carried out. Results show that the cylinder's non-dimensional cross-flow response amplitude reaches its summit of 0.572 in the ‘lock-in’ regime. The ‘2S’, instead of the ‘2P’, vortex shedding mode is dominated in the ‘lower’ branch for this 2D low-Re VIV. A secondary oscillation is observed in the lift force when ‘lock-in’ occurs. It is shown that this secondary component changes the phase, offset the energy input by the primary component and thus reduces the cylinder responses. Effects of the Skop–Griffin parameter on cylinder responses were also investigated.  相似文献   

8.
柔性圆柱涡激振动流体力系数识别及其特性   总被引:2,自引:0,他引:2  
涡激振动是诱发海洋立管、浮式平台系泊缆和海底悬跨管道等柔性圆柱结构疲劳损伤的重要因素.目前,海洋工程中用于柔性圆柱涡激振动预报的流体力系数主要来源刚性圆柱横流向受迫振动的实验数据,存在一定缺陷和误差.本文综合考虑横流向与顺流向振动耦合作用,建立了柔性圆柱涡激振动流体力模型,运用有限元法和最小二乘法确定升力系数、脉动阻力系数和附加质量系数.为了准确识别柔性圆柱涡激振动流体力系数,设计并开展了拖曳水池模型实验,实验用柔性圆柱模型的质量比为1.82,长径比为195.5.通过与刚性圆柱流体力系数对比,深入分析了柔性圆柱流体力系数的特性.结果表明:柔性圆柱在一阶模态控制区,流体力系数随约化速度变化趋势与刚性圆柱大致相似;二阶模态控制区,升力系数和脉动阻力系数显著增大;附加质量系数在响应频率较低时与振动位移的相关性增强;当响应频率较低时,振动位移较大区域为能量耗散区,当响应频率较高时,振动位移较大区域为能量输入区.  相似文献   

9.
The aerodynamic characteristics of a square cylinder with an upstream rod in a staggered arrangement were examined. The pressure measurement was conducted in a wind tunnel at a Reynolds number of ReD=82,000 (based on the width of the square cylinder) and the flow visualization was carried out in a water tunnel with the hydrogen bubble technique at ReD=5,200. When the rod and the square cylinder were in tandem, the reduction of drag was mainly caused by the increase of the rear suction pressure. When the staggered angle was introduced, the shield and disturbance effect of the rod on the square cylinder diminished, which results in the increase of the cylinder drag. The side force induced by the staggered angle is small (the maximum value is 20% of the drag of the isolate square cylinder). There were six different flow modes with various staggered angles and spacing ratios, and the corresponding flow patterns are presented in present paper.  相似文献   

10.
The volumetric reconstruction technique presented in this paper employs a two-camera stereoscopic particle image velocimetry (SPIV) system in order to reconstruct the mean flow behind a fixed cylinder fitted with helical strakes, which are commonly used to suppress vortex-induced vibrations (VIV). The technique is based on the measurement of velocity fields at equivalent adjacent planes that results in pseudo volumetric fields. The main advantage over proper volumetric techniques is the avoidance of additional equipment and complexity. The averaged velocity fields behind the straked cylinders and the geometrical periodicity of the three-start configuration are used to further simplify the reconstruction process. Two straked cylindrical models with the same pitch (p = 10d) and two different heights (h = 0.1 and 0.2d) are tested. The reconstructed flow shows that the strakes introduce in the wake flow a well-defined wavelength of one-third of the pitch. Measurements of hydrodynamic forces, fluctuating velocity, vortex formation length, and vortex shedding frequency show the interdependence of the wake parameters. The vortex formation length is increased by the strakes, which is an important effect for the suppression of vortex-induced vibrations. The results presented complement previous investigations concerning the effectiveness of strakes as VIV suppressors and provide a basis of comparison to numerical simulations.  相似文献   

11.
Drag Reduction of a Circular Cylinder Using an Upstream Rod   总被引:3,自引:0,他引:3  
Experimental studies on the drag reduction of the circular cylinder were conducted by pressure measurement at a Reynolds number of 82 000 (based on the cylinder diameter). A rod was placed upstream of and parallel to the cylinder to control the flow around the cylinder. The upstream rod can reduce the resultant force of the cylinder at various spacing between the rod and the cylinder for α < 5(α defined as the staggered angle of the rod and the cylinder). For α > 10, the resultant force coefficient has a large value, so the upstream rod cannot reduce the force on the cylinder any more. For α = 0 and d/D = 0.5 (where d and D are the diameter of the rod and the cylinder, respectively), the maximum drag of the cylinder reduces to 2.34% that of the single cylinder. The mechanism of the drag reduction of the cylinder with an upstream rod in tandem was presented by estimating the local contributions to the drag reduction of the pressure variation. In the staggered arrangement, the flow structures have five flow patterns (they are the cavity mode, the wake splitting mode, the wake merge mode, the weak boundary layer interaction mode and the negligible interaction mode) according to the pressure distribution and the hydrogen bubble flow visualization. The half plane upwind of the cylinder can be divided to four regions, from which one can easily estimates the force acting on the circular cylinder with an upstream rod in staggered arrangement.  相似文献   

12.
In the present study, a flow control method is employed to mitigate vortex-induced vibration (VIV) of a circular cylinder by using a suction flow method. The VIV of a circular cylinder was first reproduced in a wind tunnel by using a spring–mass system. The time evolution of the cylinder oscillation and the time histograms of the surface pressures of 119 taps in four sections of the circular cylinder model were measured during the wind tunnel experiments. Four steady suction flow rates were used to investigate the effectiveness of the suction control method to suppress VIV of the circular cylinder. The vibration responses, the mean and fluctuating pressure coefficients, and the resultant aerodynamic force coefficients of the circular cylinder under the suction flow control are analyzed. The measurement results indicate clearly that the steady suction flow control method exhibits excellent control effectiveness and can distinctly suppress the VIV by dramatically reducing the amplitudes of cylinder vibrations, fluctuating pressure coefficients and lift coefficients of the circular cylinder model. By comparing the test cases with different suction flow rates, it is found that there exists an optimal suction flow rate for the maximum VIV control. The cases with higher suction flow rates do not necessarily behave better than those with lower suction flow rates. With the experimental setting used in the present study, the suction flow control method is found to behave better for VIV suppression when the ratio of the suction flow velocity to the oncoming flow velocity is less than one.  相似文献   

13.
Measurements of the drag caused by turbulent boundary layer mean wall shear stress on cylinders at small angles of attack and high length Reynolds numbers (8×106<ReL<6×107) are presented. The use of a full-scale, high-speed towing tank enabled the development of turbulent boundary layers on cylinders made of stainless steel, aluminum, titanium, and polyvinyl chloride. The diameter of all cylinders in this experiment was 12.7 mm; two cylinder lengths, 3.05 m and 6.10 m, were used, corresponding to aspect ratio values L/a=480 and 960, respectively. Materials of various densities were towed at critical angles, resulting in linear cylinder geometry for tow speeds ranging from 2.6 m/s to 20.7 m/s and angles between 0° and 12°. Towing angles were measured with digital photography, and streamwise drag was measured with a strut-mounted load cell at the tow point. The measured tangential drag was very sensitive to small increases in angle at all tow speeds. A momentum thickness length scale is proposed to scale the tangential drag coefficient. The effects of the cross-flow resulting from the small angles of tow have a significant effect on the tangential drag coefficient values. A scaling for the orthogonal force on the cylinders was determined and provides a correction to published normal drag coefficient values for pure cross-flow. The presence of the axial turbulent boundary layer has a significant effect on these orthogonal forces.  相似文献   

14.
Passive control of the wake behind a circular cylinder in uniform flow is studied by numerical simulation at ReD=80. Two small control cylinders are placed symmetrically along the separating shear layers at various stream locations. In the present study, the detailed flow mechanisms that lead to a significant reduction in the fluctuating lift but maintain the shedding vortex street are clearly revealed. When the stream locations lie within 0.8≤XC/D≤3.0, the alternate shedding vortex street remains behind the control cylinders. In this case, the symmetric standing eddies immediately behind the main cylinder and the downstream delay of the shedding vortex street are the two primary mechanisms that lead to a 70–80% reduction of the fluctuating lift on the main cylinder. Furthermore, the total drag of all the cylinders still has a maximum 5% reduction. This benefit is primarily attributed to the significant reduction of the pressure drag on the main cylinder. Within XC/D>3.0, the symmetry of the standing eddy breaks down and the staggered vortex street is similar to that behind a single cylinder at the same Reynolds number. In the latter case, the mean pressure drag and the fluctuating lift coefficients on the main cylinder will recover to the values of a single cylinder.  相似文献   

15.
This work aims to develop a process for controlling a cylinder wake, especially the von Karman vortex street, in such way so as to drastically reduce the drag coefficient. A new technique for influencing the cylinder wake is proposed in the present experimental study. The flow around a circular cylinder is perturbed by temporarily changing the cylinder diameter. Experiments have been performed for Reynolds numbers in the range Re=9,500 to Re=31,500. Three values of the controlling frequencies are considered: fs1=0.41, fs2=0.54 and fs3=0.73, in addition to the stationary case corresponding to a non-deformable cylinder, fs0=0. The visualisation flow shows that the pulsing motion of the cylinder walls greatly influences both the near and far wake dynamics. A decrease of the drag is expected.
OualliEmail: Fax: +213-2186-3204
  相似文献   

16.
This paper reports results from an experiment with a lightly damped elastically mounted rigid cylinder subjected to constant flow velocity. The cylinder was allowed to vibrate in the cross-flow direction and was fixed in the flow direction. The Reynolds numbers varied from 104to 6×104. The added mass for the freely vibrating cylinder agreed well with the results found by others in driven cylinder tests. The predicted natural frequency based on the measured added mass was approximately equal to the measured mean oscillation frequency. The added mass calculated from one oscillation cycle to the next varied considerably. The oscillation frequency from one oscillation to the next corresponded to the natural frequency including the added mass for the same cycle. By movement of the attachment point of the elastic members to the external structure a disturbance could be added to the normal vortex-induced vibrations (VIV) response. When an external disturbance was introduced at a frequency other than the VIV frequency, the added mass coefficient was found to be weakly influenced by the external harmonic disturbance.  相似文献   

17.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Experimental investigations have been carried out to examine the effects of triple-starting helical grooves on the drag of fixed circular cylinders and the vortex-induced vibration of elastically supported cylinders. For the elastically supported cylinder, the Reynolds number varied from 1.3×104 to 4.6×104, whilst for the fixed cylinder from 3.1×104 to 3.75×105. A comparative approach which allows direct comparisons of the results was adopted where two cylinders of identical dimensions and physical properties with or without helical surface grooves were tested in exactly same experimental set-ups. In the elastically supported cylinder tests, the cylinders were attached to a vertically cantilevered supporting rod and towed in a towing tank. Both the in-line and cross-flow vibrations were permitted. In the fixed cylinder tests, the cylinders were supported on rigid vertical struts and towed horizontally in the same towing tank. It is found that for the case investigated the helical grooves were effective in suppressing the vortex-induced cross-flow vibration amplitudes with the peak amplitude reduced by 64%. Drag reductions of up to 25% were also achieved in the sub-critical Reynolds number range tested in the study for the fixed cylinders.  相似文献   

19.
In this paper, a detailed investigation on the flow past a porous covering cylinder is presented through the lattice Boltzmann method. The Brinkman‐Forchheimer‐extended Darcy model is adopted for the entire flow field with the solid, fluid, and porous medium. The effects of several parameters, such as porous layer thickness, Darcy number, porosity, and Reynolds number on flow field are discussed. Compared with the case of a solid cylinder, the present work shows that the porous layer may play an important role on the flow, the lift and drag force exerted on the cylinder. The numerical results indicate that the maximal drag coefficient Cd and maximal amplitude of lift coefficient Cl exist at certain Darcy number which is in the range of 10?6–10?2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号