首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present paper, the commercial CFD code “Fluent” was employed to perform 2-D simulations of an entire process that included the flow around a fixed circular cylinder, the oscillating cylinder (vortex-induced vibration, VIV) and the oscillating cylinder subjected to shape control by a traveling wave wall (TWW) method. The study mainly focused on using the TWW control method to suppress the VIV of an elastically supported circular cylinder with two degrees of freedom at a low Reynolds number of 200. The cross flow (CF) and the inline flow (IL) displacements, the centroid motion trajectories and the lift and drag forces of the cylinder that changed with the frequency ratios were analyzed in detail. The results indicate that a series of small-scale vortices will be formed in the troughs of the traveling wave located on the rear part of the circular cylinder; these vortices can effectively control the flow separation from the cylinder surface, eliminate the oscillating wake and suppress the VIV of the cylinder. A TWW starting at the initial time or at some time halfway through the time interval can significantly suppress the CF and IL vibrations of the cylinder and can remarkably decrease the fluctuations of the lift coefficients and the average values of the drag coefficients; however, it will simultaneously dramatically increase the fluctuations of the drag coefficients.  相似文献   

2.
A nonlinear time-domain simulation model for predicting two-dimensional vortex-induced vibration (VIV) of a flexibly mounted circular cylinder in planar and oscillatory flow is presented. This model is based on the utilization of van der Pol wake oscillators, being unconventional since wake oscillators have typically been applied to steady flow VIV predictions. The time-varying relative flow–cylinder velocities and accelerations are accounted for in deriving the coupled hydrodynamic lift, drag and inertia forces leading to the cylinder cross-flow and in-line oscillations. The system fluid–structure interaction equations explicitly contain the time-dependent and hybrid trigonometric terms. Depending on the Keulegan–Carpenter number (KC) incorporating the flow maximum velocity and excitation frequency, the model calibration is performed, entailing a set of empirical coefficients and expressions as a function of KC and mass ratio. Parametric investigations in cases of varying KC, reduced flow velocity, cylinder-to-flow frequency ratio and mass ratio are carried out, capturing some qualitative features of oscillatory flow VIV and exploring the effects of system parameters on response prediction characteristics. The model dependence of hydrodynamic coefficients on the Reynolds number is studied. Discrepancies and limitations versus advantages of the present model with different feasible solution scenarios are illuminated to inform the implementation of wake oscillators as a computationally efficient prediction model for VIV in oscillatory flows.  相似文献   

3.
Characteristics of cross flow around three rectangular cylinders with two aspect ratios of breadth to width arranged in connected and separated Y-shape at various angles of incident flow were studied by means of force measurement in a wind tunnel. Flow visualizations with smoke-wire technique for typical cases were also given. Different types of flow patterns were formed for individual models at different angles of incident flow. From the results of fluctuating velocity measurement in the wake, features of vibration were determined. It shows that as the wind blows along the lines of one limb or rectangular cylinder of the model, oscillation is weak, whereas when the wind blows along the bisector lines of two limbs or cylinders, strong vibration is observed. It is associated with the regular vortex shedding.The project supported by the National Natural Science Foundation of China (10172008)The English text was polished by Keren Wang  相似文献   

4.
邹琳  左红成  柳迪伟  王家辉  徐劲力 《力学学报》2022,54(11):2970-2983
基于定常吹吸气对波浪型圆柱近尾迹流动进行控制以增强柱体振动, 采用大涡模拟研究了亚临界雷诺数(Re = 3000)下前吹后吸和前后吸气控制方式在不同吹吸气工况对波浪型圆柱升阻力特性、时均压力系数、环量、湍动能及近尾迹流动结构的影响. 研究发现: 前吹后吸和前后吸气控制下波浪型圆柱在不同吹吸气动量系数工况脉动升力系数均显著提高, 最大较未受控直圆柱和波浪型圆柱分别提升高达636%和391%, 这主要可能归因于吹吸气控制使波浪型圆柱回流区变短, 高强度涡集中向钝体后方靠拢, 旋涡形成长度缩短, 展向涡流与顺流向涡流相互作用在波浪型圆柱下游形成的“肋状涡”变大变长, 近尾迹环量显著增大, 从而导致脉动升力系数增大, 这可能将诱导柱体产生更强的振动; 同时两种控制方式均改变了波浪型圆柱表面的压力分布, 由于在波浪型圆柱前驻点吹气使前端趋于流线型, 前吹后吸在不同吹吸气动量系数下波浪型圆柱的高压区减小, 但在后驻点吸气使得低压区增大, 而前后吸气在不同吹吸气动量系数下波浪型圆柱的高压区基本不变, 低压区增大. 研究结果可为低风速地区分布式风力俘能结构俘能效率提升提供基础理论支持.   相似文献   

5.
Vortex-induced vibration (VIV) of an elastically mounted rigid circular cylinder in steady current is investigated by solving the three-dimensional Navier–Stokes equations. The cylinder is allowed to vibrate only in the cross-flow direction. The aim of this study is to investigate the variation of the vortex shedding flow in the axial direction of the cylinder and to study the transition of the flow from two-dimensional (2D) to three-dimensional (3D) for VIV of a cylinder. Simulations are carried out for a constant mass ratio of 2, the Reynolds numbers ranging from 150 to 1000 and the reduced velocities ranging from 2 to 12. The three-dimensionality of the flow is found to be the strongest in the upper branch of the VIV response and weakest in the initial branch. The 2S and 2P vortex shedding modes are found to coexist along the cylinder span in the upper branch, leading to strong variations of the lift coefficient in the axial direction of the cylinder. The difference between the flow transition from 2D to 3D in the VIV lock-in regime and that in the wake of a stationary cylinder is identified. The transition mode B found in the wake of a stationary cylinder is also found in the wake of a vibrating cylinder. The critical Reynolds number for flow transition from 2D to 3D of a cylinder undergoing cross-flow VIV at a reduced velocity of 6 is found to be greater than that for a stationary cylinder. For a constant reduced velocity of 6, the wake flow changes from 2D to 3D as the Reynolds number is increased from 250 to 300. Some 2D numerical simulations are performed and it is found that the 2D Navier–Stokes (NS) equations are not able to predict the VIV in the turbulent flow regime, while the 2D Reynolds-averaged Navier–Stokes (RANS) equations improve the results.  相似文献   

6.
In this paper, the electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder is investigated numerically based on the stream function–vorticity equations in the exponential–polar coordinates attached on the moving cylinder for Re=150. The effects of the instantaneous wake geometries and the corresponding cylinder motion on the hydrodynamic forces for one entire period of vortex shedding are discussed using a drag–lift phase diagram. The drag–lift diagram is composed of the upper and lower closed curves due to the contributions of the vortex shedding but is magnified, translated and turned under the action of the cylinder motion. The Lorentz force for controlling the vibration cylinder is classified into the field Lorentz force and the wall Lorentz force. The symmetric field Lorentz force will symmetrize the flow passing over the cylinder and decreases the lift oscillation, which, in turn, suppresses the VIV, whereas the wall Lorentz force has no effect on the lift. The cylinder vibration increases as the work performed by the lift dominates the energy transfer. Otherwise, the cylinder vibration decreases. If the net transferred energy per motion is equal to zero, the cylinder will vibrate steadily or be fixed.  相似文献   

7.
Two-dimensional Unsteady Reynolds-Average Navier–Stokes equations with the Spalart–Allmaras turbulence model are used to simulate the flow induced motions of multiple circular cylinders with passive turbulence control (PTC) in steady uniform flow. Four configurations with 1, 2, 3, and 4 cylinders in tandem are simulated and studied at a series of Reynolds numbers in the range of 30 000<Re<120 000. Simulation results are verified by experimental data measured in the Marine Renewable Energy Laboratory. Good agreement was observed between the values of vorticity, amplitude ratio, and frequency ratio predicted by numerical simulations and experimental measurements. The amplitude and frequency response show the initial and upper branches in vortex induced vibration (VIV), transition from VIV to galloping, and galloping branch for all PTC-cylinders. The maximum amplitude of 2.9 diameters for the first cylinder is achieved at Re=104 356 in the numerical results. Compared with the first cylinder, the VIV initial branch starts at higher Re for the downstream cylinders due to the presence of the upstream cylinder(s). 2P and 2P+2S vortex patterns are observed at Re=62 049 and Re=90 254 for the single PTC-cylinder. Furthermore, the shed vortices of the downstream cylinders are strongly disrupted and modified by the vortices shed from the upstream one in the cases of multiple PTC-cylinders.  相似文献   

8.
刘俊  高福平 《力学学报》2019,51(6):1630-1640
柱体涡激振动是典型的流固耦合问题,其响应规律标识码在升速流动和远离壁面条件下获得的. 而自然环境流动通常不断经历升速和降速过程,近壁面柱体的涡激振动可呈现与远离标识码体不同的响应特征. 本研究结合大型波流水槽,设计了具有微结构阻尼的柱体涡激振动装置. 基于量纲分析,开展系列水槽标识码验,通过同步测量柱体涡激振动位移时程和绕流流场变化,研究了升降流速作用下柱体涡激振动触发和停振的临界速度(即上临标识码临界速度)变化规律,探究了近壁面柱体涡激振动迟滞效应. 采用自下向上激光扫射的 PIV 流场测量系统,对比分析了固定柱体标识码振动柱体的绕流特征. 实验观测表明,近壁面柱体涡激振动触发的临界速度呈现随壁面间距比减小而逐渐减小的变化趋势;但标识码速条件下的涡激振动停振所对应的下临界速度却明显小于升速时的涡激振动触发所对应的上临界速度. 采用上临界与下临界约标识码差值可定量表征涡激振动迟滞程度,研究发现该值随着柱体间距比减小呈线性增大趋势. 涡激振动迟滞现象通常伴随振幅阶跃标识码阶跃值则随着间距比减小而非线性减小.   相似文献   

9.
We employ passive flow control using two-dimensional hydrofoils to reduce vortex-induced vibrations (VIV) and drag on a cylinder of circular cross-section. We test the hypothesis that by using foils to bend the streamlines around the cylinder, and hence forcing the flow to approach potential flow-like patterns VIV and drag will be reduced. A systematic parametric search, first using groups of two and then four foils, shows that it is possible to completely eliminate vibrations and reduce the drag coefficient to about Cd=0.50 at sub-critical Reynolds numbers. This parametric search is conducted in conjunction with force measurement and particle image velocimetry on a fixed towed cylinder. The effectiveness of the foils in regards to VIV was further tested with an apparatus allowing free transverse vibrations of a towed cylinder.  相似文献   

10.
The present work is aimed to give some insight into the relation between vortex shedding modes and transition to three-dimensionality in the wake of a freely vibrating cylinder by establishing a numerical model and analyzing the relevant results of two- and three-dimensional simulations. The compressible flow past an elastically-mounted cylinder is solved by using the immersed boundary method (IB method). The cylinder is free to vibrate in the transverse direction with zero structure damping. The response of displacement amplitude is studied with the variation of reduced velocity. Whether P+S mode exists in three-dimensional flow and the occurrence of 2P mode is caused by flow transition from two-dimensional to three-dimensional are problems of concern. Both 2P and P+S wake modes are observed in two- and three-dimensional simulations. The numerical results indicate that the flow transition from two-dimensional to three-dimensional is coupled with the cylinder vibration in the synchronization/lock-in regime. The wake formation given by three-dimensional simulations suggests that the P+S mode might exist in reality when the flow is reverted to two-dimensional by vortex induced vibration (VIV) at Re=300–350. When Reynolds number increases to 425, the wake formation undergoes transition to three-dimensionality and 2P mode is observed. The effect of mass ratio on the flow transition to three-dimensionality is studied. The relationship between wake modes and aerodynamic forces is discussed.  相似文献   

11.
Experiments have been conducted to investigate the two-degree-of-freedom vortex-induced vibration (VIV) response of a rigid section of a curved circular cylinder with low mass-damping ratio. Two curved configurations, a concave and a convex, were tested regarding the direction of the flow, in addition to a straight cylinder that served as reference. Amplitude and frequency responses are presented versus reduced velocity for a Reynolds number range between 750 and 15 000. Results for the curved cylinders with concave and convex configurations revealed significantly lower vibration amplitudes when compared to the typical VIV response of a straight cylinder. However, the concave cylinder showed relatively higher amplitudes than the convex cylinder which were sustained beyond the typical synchronisation region. We believe this distinct behaviour between the convex and the concave configurations is related to the wake interference taking place in the lower half of the curvature due to perturbations generated in the horizontal section when it is positioned upstream. Particle-image velocimetry (PIV) measurements of the separated flow along the cylinder highlight the effect of curvature on vortex formation and excitation revealing a complex fluid–structure interaction mechanism.  相似文献   

12.
Although vortex-induced vibration (VIV) has been extensively studied, much of existing literature deals with uniform flow in the absence of a boundary. The VIV flow field of a structure close to a boundary generally remains unexplored, but it can have important engineering implications, such as pipeline scour if the boundary is an erodible seabed. In this paper, laboratory experiments are performed to investigate the flow characteristics of an elastically mounted circular cylinder undergoing VIV, and a rigid plane boundary is considered to simplify the problem. The initial gap-to-diameter ratio is fixed at 0.8, and six different reduced velocities are considered. The velocity field is measured using a high resolution particle image velocimetry (PIV) system, which has several advantages over traditional PIV systems, including high sampling rate and the ability to mitigate scatter of laser light near the boundary, allowing accurate measurements at the viscous sublayer. This paper presents the vibration amplitude and oscillation frequency for different Vr; in addition, the mean velocity field, turbulence characteristics, vortex behavior, gap flow velocity, and normal/shear stresses on the boundary were measured/calculated, leading to new insights on the flow field behavior.  相似文献   

13.
Fluid-structure interactions (FSI) of rigid and flexible bodies are simulated in this article. For the fluid flow, multidirect forcing immersed boundary method (IBM) is adopted to capture the moving boundary, and lattice Boltzmann method (LBM) is used to evolve the flow field. Compared with our previous no-penetration IBM, less iterations are required in this work. In addition, larger velocity in lattice units can be used and the nonphysical force oscillations are suppressed due to the C3 6-point kernel. Multi-relaxation-time collision operator and local grid refinement are also adopted in LBM to enhance the numerical stability and efficiency. To improve the efficiency of the FSI coupling algorithm, the mesh of the deformable structure can be coarser than the Lagrangian mesh using Newton-Cotes formulas to integrate the traction on the structure surface. A variety of benchmarks, including flow around a circular cylinder with Reynold number ranging from 20 to 200, forced oscillation of a circular cylinder, vortex-induced vibration (VIV) of an elastically mounted circular cylinder in two degrees of freedom, and VIV of an elastic cantilever beam attached to a circular cylinder, are carried out to evaluate the accuracy and stability of the present coupling algorithm. For the benchmark FSI problem considered in this article, a reduction of 54% of the calculation time is achieved using coarser structure mesh. As an application of the FSI coupling algorithm, the mechanism of an elastic beam in the wake of a circular cylinder is discussed.  相似文献   

14.
The effects of tension on vortex-induced vibra-tion (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimen-tally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibra-tion frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direc-tion of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.  相似文献   

15.
We present a harmonic balance (HB) method to model frequency lock-in effect during vortex-induced vibration (VIV) of elastically mounted circular cylinder and a flexible riser section in a freestream uniform flow. The fluid flow and structure are coupled by a fixed-point iteration process through a frequency updating algorithm. By minimizing the structural residual in the standard least-square norm, the convergence of HB-based fixed-point algorithm is achieved for a range of reduced velocity. To begin with, the HB solver is first assessed for a periodic unsteady flow around a stationary circular cylinder. A freely vibrating circular cylinder is then adopted for the reduced-order computation of VIV at low Reynolds numbers of Re=100 and 180 with one- and two-degrees-of-freedom. The coupled VIV dynamics and the frequency lock-in phenomenon are accurately captured. The results show that the HB solver is able to predict the amplitude of vibration, frequency and forces comparable to its time domain counterpart, while providing a significant reduction with regard to overall computational cost. The proposed new scheme is then demonstrated for a fully-coupled three dimensional (3D) analysis of a linear-elastic riser section undergoing vortex-induced vibration in the lock-in range. The results reveal the 3D effects through isosurfaces of streamwise vorticity blobs distributed over the span of flexible riser section. In comparison to time domain results, the 3D flow-structure interactions are accurately predicted while providing a similar speed up rate that of 2D simulations. This further corroborates that the HB solver can be extended to 3D flow-structure dynamics without compromising efficiency and accuracy.  相似文献   

16.
An isolated two-dimensional circular cylinder with two linear degrees of freedom, parallel and perpendicular to the free-stream direction, and owning a nonlinear energy sink (NES) is investigated by fluid–structure interaction (FSI) simulations to assess vortex-induced vibrations (VIV) at moderate Reynolds numbers. Subsequently, the wake-induced vibration (WIV) of a pair of identical cylinders under the action of two NES in a tandem arrangement and in a proximity–wake interference regime is explored using the same approach. The NES parameters (mass, nonlinear stiffness and damping) are investigated to determine their effects on the dynamic response of a single degree of freedom (in transverse flow direction) coupled system by a reduced-order model based on an experimentally validated van der Pol oscillator. The CFD model coupled with FSI method is also validated against VIV experimental data for an isolated cylinder in a uniform flow. The study is aimed to investigate the effect of the passive suppression NES device on VIV and WIV. The amplitude response, trajectories of cylinder motion and temporal evolutions of vortex shedding are obtained by conducting a series of numerical simulations. It is found that placing a tuned NES in the cylinders can provide good suppression effect; however, the effectiveness is function of the reduced velocity.  相似文献   

17.
A direct numerical simulation of two-dimensional (2D) flow past an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method had been undertaken. The cylinder motion was modelled by a two degree-of-freedom mass–spring–damper system. The computing code was verified against a benchmark problem in which flow past a stationary circular cylinder is simulated. Then, analyses of vortex-induced vibration (VIV) responses, drag and lift forces and the phase and vortex structures were carried out. Results show that the cylinder's non-dimensional cross-flow response amplitude reaches its summit of 0.572 in the ‘lock-in’ regime. The ‘2S’, instead of the ‘2P’, vortex shedding mode is dominated in the ‘lower’ branch for this 2D low-Re VIV. A secondary oscillation is observed in the lift force when ‘lock-in’ occurs. It is shown that this secondary component changes the phase, offset the energy input by the primary component and thus reduces the cylinder responses. Effects of the Skop–Griffin parameter on cylinder responses were also investigated.  相似文献   

18.
悬浮隧道锚索的涡激振动会加剧锚索的疲劳破坏,进而影响悬浮隧道的使用寿命和安全.文章在海洋立管涡激振动抑制研究的基础上,考虑悬浮隧道锚索倾斜角度和来流方向的影响,采用流固耦合的数值方法,对整流罩方法和三控制杆方法的抑制效果进行了分析.结果表明,在顺来流方向,两种方法均具有良好的抑振效果;锚索有倾斜的情况下,三控制杆方法的效果会有所提升;但在来流方向改变时,整流罩方法具有较强的适应性.  相似文献   

19.
Both amplitude modulation and frequency modulation of Vortex-induced Vibration (VIV) are observed in a recent model test of a flexible cylinder under oscillatory flow, but its hydrodynamics has not yet been broached in detail. This paper employs the Forgetting Factor Least Squares (FF-LS) method for identification of time-varying hydrodynamics of a flexible cylinder under modulated VIV. The FF-LS method’s applicability to accurately identify time-varying hydrodynamic coefficients is demonstrated through an elastically mounted rigid cylinder under flow with a given modulated motion. Furthermore, we propose a framework to predict instantaneous amplitude (envelope) and frequency using time-varying hydrodynamic coefficients to establish their analytical relationship. This prediction method is further extended to a highly tensioned flexible cylinder through Fourier series expansion in the spatial domain. By performing the identification procedure for all sampled data of a flexible cylinder undergoing oscillatory flow, we obtain the corresponding time-varying hydrodynamics in the cross-flow direction considering the amplitude and frequency modulation. The results show that, under modulated VIV, hydrodynamic coefficients of the flexible cylinder also show time-varying characteristics. We further investigate differences between identified hydrodynamic coefficients and those obtained from the database of a cylinder with modulated motion under flow. Prediction results using these identified time-varying coefficients reveal that the time-varying excitation coefficients mainly influence the amplitude modulation, and the time-varying added-mass coefficients contain the major information of frequency modulation. These results further suggest including the temporal derivative of the instantaneous amplitude as one determining parameter in building databases to improve the prediction of modulated VIV.  相似文献   

20.
On the study of vortex-induced vibration of a cylinder with helical strakes   总被引:1,自引:0,他引:1  
While the effect of helical strakes on suppression of Vortex-Induced Vibrations (VIV) has been studied extensively, the mechanism of VIV mitigation using helical strakes is much less well documented in the literature. In the present study, a rigid circular cylinder of diameter d=80 mm attached with three-strand helical strakes of dimensions of 10d in pitch and 0.12d in height was tested in a wind tunnel. It was found that the helical strakes can reduce VIV by about 98%. Unlike the bare cylinder, which experiences lock-in over the reduced velocity in the range of 5-8.5, the straked cylinder does not show any lock-in region. In exploring the mechanism of VIV reduction by helical strakes, measurements in stationary bare and straked cylinder wakes using both a single X-probe at four different Reynolds numbers, i.e. Re=10 240, 20 430, 30 610 and 40 800, and two X-probes with variable separations in the spanwise direction at Re=20 430 were conducted. It was found that vortices shed from the straked cylinder are weakened significantly. The dominate frequency varies by about 30% over the range of x/d=10-40 in the streamwise direction while that differs by about 37.2% of the averaged peak frequency over a length of 3.125d in the spanwise direction. The latter is supported by the phase difference between the velocity signals measured at two locations separated in the spanwise direction. The correlation length of the vortex structures in the bare cylinder wake is much larger than that obtained in the straked cylinder wake. As a result, the straked cylinder wake agrees more closely with isotropy than the bare cylinder wake. Flow visualization on the plane perpendicular to the cylinder axis at Reynolds number of about 300 reveals small-scale vortices in the shear layers of the straked cylinder wake. However, these vortices do not roll up and interact with each other to form the well-organized Karman-type vortices. Flow visualization on the plane parallel to the cylinder axis shows vortex dislocation and swirling flow, which should be responsible for the variations of the peak frequency in the streamwise as well as spanwise directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号