首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Introducing a finite correlation 0 between any two learned patterns (others remaining uncorrelated), we observe in a numerical simulation that the Hopfield model stores these two patterns with correlation f such that f0 for any loading capacity. The patterns are memorized perfectly (with f= 0) up to -0.05 for finite correlations 0 not exceeding a value c(), where c() decreases continuously to zero at -0.05.  相似文献   

2.
We use the reference interaction site model (RISM) integral equation theory to study the percolation behavior of fluids composed of long molecules. We examine the roles of hard core size and of length-to-width ratio on the percolation threshold. The critical density c is a nonmonotonic function of these parameters exhibiting competition of different effects. Comparisons with Monte Carlo calculations of others are reasonably good. For critical exponents, the theory yields =2=2 for molecules of any noninfinite lengthL. WhenL is very large, the theory yields cL –2. These predictions compare favorably with observations of the conductivity for random assemblies of conductive fibers. The threshold region where asymptotic scaling holds requires the correlation length (/ c ) –v to be much larger thanL. Evidently, the range of densities in this region diminishes asL increases, requiring that density deviations from c be no larger thanL –2. Otherwise, crossover behavior will be observed.  相似文献   

3.
Monte Carlo simulation and series expansion shows the radius of gyration of large clusters withs sites each to vary ass with0.56 in two and0.47 in three dimensions at the percolation threshold, and with(d=2)0.65 and(d=3)0.53 for random lattice animals (zero concentration). Clusters up tos=100 were used. The perimeter of random animals approaches 2.8s for larges on the simple cubic lattice. Monte Carlo simulation of the Eden process (growing animals) up tos=5,000 indicates a systematic variation of about ±0.05 for the effective exponent=(s) and thus suggests that the true asymptotic exponents may be compatible with the predictions of hyper-scaling.  相似文献   

4.
We review some exact results for the motion of a tagged particle in simple models. Then, we study the density dependence of the self-diffusion coefficientD N() in lattice systems with simple symmetric exclusion in which the particles can jump, with equal rates, to a set ofN neighboring sites. We obtain positive upper and lower bounds onF N()=N{(1–)–[DN()/DN(0)]}/[(1–)]x for [0, 1]. Computer simulations for the square, triangular, and one-dimensional lattices suggest thatF N becomes effectively independent ofN forN20.  相似文献   

5.
A slight modification of the recent Penrose and Lebowitz treatment of thermodynamic metastable states is presented. For the case of periodic boundary conditions, this modification allows the condition of metastability to be extended to all the metastable states in the van der Waals-Maxwell theory of the liquid-vapor phase transition, that is, for all states satisfyingf 0()+1/2 2>f(, 0+) andf0()+x>0 wheref(, 0+) is the (stable) Helmholtz free energy density of the generalized van der Waals-Maxwell theory andf 0() is the Helmholtz free energy density of a reference system with no long-range interaction, is a mean field-type term arising from a long-range Kac interaction, is the overall mean particle density, andx is any positive number. For the case of rigid-wall boundary conditions, a more restrictive condition is placed onx.  相似文献   

6.
The impurity contribution to the resistivity in zero field (T) of dilute hexagonal single crystals of ZnMn, CdMn and MgMn has been studied in the mK range on samples cut parallel () and perpendicular () to thec-axis, using a SQUID technique for the measurements. Typical spin glass behavior is found in (T) as well as (T) for all alloys, with Kondo like logarithmic increases at higher temperatures and maxima atT m at lower temperatures, indicating the influence of impurity interactions. The differences in the corresponding isotropic resistivity poly(T) between the three systems can qualitatively be understood within the framework of a theoretical model by Larsen, describing (T) as a function of universal quantitiesT/T K and RKKY/T K , where RKKY is the RKKY-interaction strength andT K the Kondo temperature. With respect to the two lattice directions studied, the behavior of (T and (T is anisotropic in the Kondo regime as well as in the range where ordering becomes important. While the anisotropy in the Kondo slope can be understood by an anisotropic unitarity limit, the understanding of the anisotropy in region where impurity interactions are important remains problematic.Dedicated to Prof. Dr. S. Methfessel on the occasion of his 60th birthday  相似文献   

7.
The decay constant of64Cu in Cu–Ag solid solutions has been measured at various Cu concentrations. Deduced values of the relative changes of electron densities (0)/(0) at the Cu nucleus are given. The observed concentration dependence of (0)/(0) is discussed in terms of a volume effect and charge transfer from Cu to Ag.  相似文献   

8.
We employ a basic formalism from convex analysis to show a simple relation between the entanglement of formation EF and the conjugate function E* of the entanglement function E()=S(TrA). We then consider the conjectured strong superadditivity of the entanglement of formation EF()EF(I)+EF(II), where I and II are the reductions of to the different Hilbert space copies, and prove that it is equivalent with subadditivity of E*. Furthermore, we show that strong superadditivity would follow from multiplicativity of the maximal channel output purity for quantum filtering operations, when purity is measured by Schatten p-norms for p tending to 1.  相似文献   

9.
We analyze the limiting behavior of the densities A(t) and B(t), and the random spatial structure(r) = ( A(t)., B(t)), for the diffusion-controlled chemical reaction A+Binert. For equal initial densities B(0) = b(0) there is a change in behavior fromd 4, where A(t) = B(t) C/td/4, tod 4, where A(t) = b(t) C/t ast ; the termC depends on the initial densities and changes withd. There is a corresponding change in the spatial structure. Ind < 4, the particle types separate with only one type present locally, and , after suitable rescaling, tends to a random Gaussian process. Ind >4, both particle types are, after large times, present locally in concentrations not depending on type or location. Ind=4, both particle types are present locally, but with random concentrations, and the process tends to a limit.  相似文献   

10.
The uniform nearest particle system (UNPS) is studied, which is a continuoustime Markov process with state space . The rigorous upper bound (mf) = ( – 1)/ for the order parameter 2, is given by the correlation identity and the FKG inequality. Then an improvement of this bound (mf) is shown in a similar fashion; C( – 1)/|log( – 1) for >1. Recently, Mountford proved that the critical value c=1. Combining his result and our improved bound implies that if the critical exponent exists, it is strictly greater than the mean-field value 1 in the weak sense.  相似文献   

11.
The total energy of many-nucleon system is expressed as a functional E[ p(r), n(r)] of the proton and neutron densities p(r) and n(r), respectively. The distribution(r) of nucleons in the nucleus, which is essential to determine the energy functional, is chosen. The energy density formalism is applied to finite nuclei, and then the binding energies per nucleon together with the mean square radii, for some medium and heavy nuclei, are obtained. Finally the achieved results are compared with the corresponding experimental values.  相似文献   

12.
We show that ifb andb are two boundary conditions (b.c.) for general spin systems on d such that the difference in the energies of a spin configuration in d is uniformly bounded, |H ,b ()–H ,b()|C < , then any infinite-volume Gibbs states and obtained with these b.c. have the same measure-zero sets. This implies that the decompositions of and into extremal Gibbs states are equivalent (mutually absolutely continuous). In particular, if is extremal,=. Application of this observation yields in an easy way (among other things) (a) the uniqueness of the Gibbs states for one-dimensional systems with forces that are not too long-range; (b) the fact that various b.c. that are natural candidates for producing non-translation-invariant Gibbs states cannot lead to such an extremal Gibbs state in two dimensions.Supported in part by NSF Grant PHY 78–15920 and by the Swiss National Foundation For Scientific Research.  相似文献   

13.
Self-dual solutions for SU(2) gauge fields on Euclidean space that satisfy Yang's ansatz are generalized by considering as a function of for a special case when is a complex analytic function and for SU(3) when i, i = 1, 2, 3, are complex analytic functions.  相似文献   

14.
The temperature dependence of the electric conductivity and the Hall and Nernst-Ettinghausen effects of amorphous and microcrystalline Fe-Ni films obtained by ion-plasma sputtering, with a content of technological impurities of about 3 at. %, was studied for the first time. The relationship Ra(T) a2(T), was found between the anomalous Hall constant Ra and . Ra was found to be more sensitive to peculiarities of the complex transformation amorphous, microheterogeneous-crystalline state.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 29–33, September, 1990.  相似文献   

15.
ForA any subset of () (the bounded operators on a Hilbert space) containing the unit, and and restrictions of states on () toA, ent A (|)—the entropy of relative to given the information inA—is defined and given an axiomatic characterisation. It is compared with ent A A (|)—the relative entropy introduced by Umegaki and generalised by various authors—which is defined only forA an algebra. It is proved that ent and ent S agree on pairs of normal states on an injective von Neumann algebra. It is also proved that ent always has all the most important properties known for ent S : monotonicity, concavity,w* upper semicontinuity, etc.  相似文献   

16.
It is shown that Friedmann–Robertson–Walker (FRW) cosmological models coupled to a single scalar field and to a perfect fluid fitting a wide class of matter perfect fluid state equations, determined in (3+1) dimensional gravity can be related to their (2+1) cosmological counterparts, and vice-versa, by using simple algebraic rules relating gravitational constants, state parameters, perfect fluid and scalar field characteristics. It should be pointed out that the demonstration of these relations for the scalar fields and potentials does not require the fulfilment of any state equation for the scalar field energy density and pressure. As far as to the perfect fluid is concerned, one has to demand the fulfilment of state equations of the form p+ = f(). If the considered cosmologies contain the inflation field alone, then any (3+1) scalar field cosmology possesses a (2+1) counterpart, and vice-versa. Various families of solutions are derived, and we exhibited their correspondence; for instance, solutions for pure matter perfect fluids and single scalar field fulfilling linear state equations, solutions for scalar fields coupled to matter perfect fluids, a general class of solutions for scalar fields subjected to a state equation of the form p + = are reported, in particular Barrow–Saich, and Barrow–Burd–Lancaster–Madsen solutions are exhibited explicitly, and finally perfect fluid solutions for polytropic state equations are given.  相似文献   

17.
We study the evolution of the completely asymmetric simple exclusion process in one dimension, with particles moving only to the right, for initial configurations corresponding to average density ( +) left (right) of the origin, +. The microscopic shock position is identified by introducing a second-class particle. Results indicate that the shock profile is stable, and that the distribution as seen from the shock positionN(t) tends, as time increases, to a limiting distribution, which is locally close to an equilibrium distribution far from the shock. Moreover , withV=1– +, as predicted, and the dispersion ofN(t), 2(t), behaves linearly, for not too small values of + , i.e., , whereS is equal, up to a scaling factor, to the valueS WA predicted in the weakly asymmetric case. For += we find agreement with the conjecture .Dedicated to the memory of Paola Calderoni.  相似文献   

18.
We show that with the help of a suitable coupling between dark energy and cold dark matter it is possible to reproduce any scaling solution X M a , where X and M are the densities of dark energy and dark matter, respectively. We demonstrate how the case = 1 alleviates the coincidence problem. Future observations of supernovae at high redshift as well as quasar pairs which are planned to discriminate between different cosmological models will also provide direct constraints on the coupling between dark matter and dark energy.  相似文献   

19.
Consider the system of particles on d where particles are of two types—A andB—and execute simple random walks in continuous time. Particles do not interact with their own type, but when anA-particle meets aB-particle, both disappear, i.e., are annihilated. This system serves as a model for the chemical reactionA+B inert. We analyze the limiting behavior of the densities A (t) and B (t) when the initial state is given by homogeneous Poisson random fields. We prove that for equal initial densities A (0)= B (0) there is a change in behavior fromd4, where A (t)= B (t)C/t d /4, tod4, where A (t)= B (t)C/tast. For unequal initial densities A (0)< B (0), A (t)e cl ind=1, A (t)e Ct/logt ind=2, and A (t)e Ct ind3. The termC depends on the initial densities and changes withd. Techniques are from interacting particle systems. The behavior for this two-particle annihilation process has similarities to those for coalescing random walks (A+AA) and annihilating random walks (A+Ainert). The analysis of the present process is made considerably more difficult by the lack of comparison with an attractive particle system.  相似文献   

20.
Cancrini  N.  Cesi  F.  Martinelli  F. 《Journal of statistical physics》1999,95(1-2):215-271
In this paper we analyze the convergence to equilibrium of Kawasaki dynamics for the Ising model in the phase coexistence region. First we show, in strict analogy with the nonconservative case, that in any lattice dimension, for any boundary condition and any positive temperature and particle density, the spectral gap in a box of side L does not shrink faster than a negative exponential of the surface L d–1. Then we prove that, in two dimensions and for free boundary condition, the spectral gap in a box of side L is smaller than a negative exponential of L provided that the temperature is below the critical one and the particle density satisfies (*, *+), where *± represents the particle density of the plus and minus phase, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号