首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ni–Co oxide nanocomposite was prepared by thermal decomposition of the precursor obtained via a new method—coordination homogeneous coprecipitation method. The synthesized sample was characterized physically by X-ray diffraction, scanning electron microcopy, energy dispersive spectrum, transmission electron microscope, and Brunauer–Emmett–Teller surface area measurement, respectively. Electrochemical characterization of Ni–Co oxide electrode was examined by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance measurements in 6-mol L−1 KOH aqueous solution electrolyte. The results indicated that the addition of cobalt oxide not only changed the morphology of NiO but also enhance its electrochemical capacitance value. A specific capacitance value of 306 F g−1 of Ni–Co oxide nanocomposite with n Co = 0.5 (n Co is the mole fraction of Co with respect to the sum of Co and Ni) was measured at the current density of 0.2 A g−1, nearly 1.5 times greater than that of pure NiO electrode. Lower resistance and better rate capability can also be observed.  相似文献   

2.
Manganese–vanadium oxide had been synthesized by a novel simple precipitation technique. Scanning electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller, thermogravimetric analysis/differential scanning calorimetry, and X-ray photoelectron spectroscopy were used to characterize Mn–V binary oxide and δ-MnO2. Electrochemical capacitive behavior of the synthesized Mn–V binary oxide and δ-MnO2 was investigated by cyclic voltammetry, galvanostic charge–discharge curve, and electrochemical impedance spectroscope methods. The results showed that, by introducing V into δ-MnO2, the specific surface area of the mixed oxide increased due to a formation of small grain size. The specific capacitance increased from 166 F g−1 estimated for MnO2 to 251 F g−1 for Mn–V binary oxide, and the applied potential window extended to −0.2–1.0 V (vs. saturated calomel electrode). Through analysis, it is suggested that the capacitance performance of Mn–V binary oxide materials may be improved by changing the following three factors: (1) small grain and particle size and large activity surface area, (2) appropriate amount of lattice water, and (3) chemical state on the surface of MnO2 material.  相似文献   

3.
Regular hexagonal Co–Al layered double hydroxides (Co–Al LDH) were synthesized by urea-induced homogeneous precipitation. This material proved to be nanosheets by scanning electron microscopy and X-ray diffraction measurements. The electrochemical capacitive behavior of the nanosheets in 1 M KOH solution were evaluated by constant current charge/discharge and cyclic voltammetric measurements, showing a large specific capacitance of 192 F·g−1 even at the high current density of 2 A·g−1. When multiwall carbon nanotubes (MWNTs) were mixed with the Co–Al LDH, it was found that the specific capacitance and long-life performance of all composite electrodes at high current density are superior to pure LDH electrode. When the added MWNTs content is 10 wt%, the specific capacitance increases to 342.4 F·g−1 and remains at a value of 304 F·g−1 until the 400th cycle at 2 A·g−1, showing that this is a promising electrode material for supercapacitors working at heavy load. According to the electrochemical impedance spectra, MWNTs greatly increase the electronic conductivity between MWNTs and the surface of Co–Al LDH, which consequently facilitates the access of ions in the electrolyte and electrons to the electrode/electrolyte interface.  相似文献   

4.
Nanostructured Co x Ni1−x –Al layered triple hydroxides (Co x Ni1−x –Al LTHs) have been successfully synthesized by a facile hydrothermal method using glycine as chelating agent. The samples were characterized by X-ray diffraction, thermogravimetry, Fourier transform infrared spectroscopy and scanning electron microscopy. The morphologies of Co x Ni1−x –Al LTHs varied with the Co content and its effect on the electrochemical behavior was studied by cyclic voltammetry and galvanostatic charge–discharge techniques. Electrochemical data demonstrated that the Co x Ni1−x –Al LTHs with Co/Ni molar ratio of 3:2 owned the best performance and delivered a maximum specific capacitance of 1,375 F g−1 at a current density of 0.5 A g−1 and a good high-rate capability. The capacitance retained 93.3% of the initial value after 1,000 continuous charge–discharge cycles at a current density of 2 A g−1.  相似文献   

5.
A facile hydrothermal strategy was first proposed to synthesize flower-like Co(OH)2 hierarchical microspheres. Further physical characterizations revealed that the flower-like Co(OH)2 microspherical superstructures were self-assembled by one-dimension nanobelts with rich mesopores. Electrochemical performance of the flower-like Co(OH)2 hierarchical superstructures were investigated by cyclic voltammgoram, galvanostatic charge–discharge and electrochemical impedance spectroscopy in 3 M KOH aqueous electrolyte. Electrochemical data indicated that the flower-like Co(OH)2 superstructures delivered a specific capacitance of 434 F g−1 at 10 mA cm−2 (about 1.33 A g−1), and even kept it as high as 365 F g−1 at about 5.33 A g−1. Furthermore, the SC degradation of about 8% after 1,500 continuous charge–discharge cycles at 5.33 A g−1 demonstrates their good electrochemical stability at large current densities.  相似文献   

6.
Silicon monoxide/graphite/multi-walled carbon nanotubes (SiO/G/CNTs) material was prepared by ball milling followed by chemical vapor deposition method and characterized by X-ray diffraction, scanning electron microscopy (SEM), galvanostatic charge–discharge, and AC impedance spectroscopy, respectively. The results revealed that SiO/G/CNTs exhibited an initial specific discharge capacity of 790 mAh g−1 with a columbic efficiency of 65%. After 100 cycles, a high reversible capacity of 495 mAh g−1 is still retained. The improved electrochemical properties were due to beneficial SEI by the SEM and EIS results.  相似文献   

7.
Layers of cobalt and manganese oxides were co-deposited or deposited on top of each other or next to each other by potentiostatic method onto stainless steel substrate. Deposition potentials of 1 and −1 V for the anodic and cathodic depositions were employed. Specific capacitance values in the range of 38.5–78 F g−1 were found with cobalt oxide on top of manganese oxide having the lowest and manganese oxide on top of cobalt oxide having the highest capacitances. The usefulness of the electrodes was characterized by cyclic voltammetry, charge–discharge cycling, and electrochemical impedance spectroscopy in 2 M NaOH electrolyte for redox supercapacitor applications. The latter presented the best charge/discharge behavior with no voltage drop due to lower ohmic resistance in prepared substrate; although the steadiest current observed in the course of voltammetry was due to the former. The evaluated double layer and specific capacitances for co-deposited sample according to the impedance studies were 1.75 and 47.5 F g−1, respectively, being in good agreement with voltammetric measurements.  相似文献   

8.
Carbon materials enriched with nitrogen and oxygen surface functional groups were obtained by pyrolyzing strained beer yeast at 750 °C under an inert atmosphere. Physical and surface properties of the carbon obtained were characterized by X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectrometry, and X-ray photoelectron spectroscopy. Results show that the carbon possesses an amorphous structure, a spherical morphology, and a high density of surface functional groups. Electrochemical properties were evaluated by cyclic voltammetry, a galvanostatic charge–discharge technique, and electrochemical impedance spectroscopy. The carbon has 989.65 mAh·g−1 of initial discharge capacity and a stable cycle performance for a Li–C cell. A specific capacitance of 120 F·g−1 was obtained for a single carbon electrode and good cycle performance was achieved for a symmetrical supercapacitor fabricated using this carbon. These carbons derived from strained beer yeast have promising applications in energy storage and conversion systems.  相似文献   

9.
TiO2 array film fabricated by potentiostatic anodization of titanium is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge–discharge measurements. The XRD results indicated that the TiO2 array is amorphous, and after calcination at 500 °C, it has the anatase form. The pore size and wall thickness of TiO2 nanotube arrays synthesized at different anodization voltages are highly dependent on the applied voltage. The electrochemical performance of the prepared TiO2 nanotube array as an electrode material for lithium batteries was evaluated by galvanostatic charge–discharge measurement. The sample prepared at 20 V shows good cyclability but low discharge capacity of 180 mA h cm−3, while the sample prepared at 80 V has the highest discharge capacity of 340 mA h cm−3.  相似文献   

10.
A novel nanocomposite of Co(OH)2−Ni(OH)2 and ultrastable Y molecular sieves was synthesized by an improved chemical precipitation method for electrochemical capacitors. The Co(OH)2−Ni(OH)2/ultrastable Y zeolite (USY) composite and its microstructure were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Electrochemical characterization was performed by cyclic voltammetry and galvanostatic charge–discharge measurements. The results show that Co(OH)2−Ni(OH)2/USY microstructure applied for the electrochemical energy storage has displayed superior capacitive performance. The effect of heat treatment conditions on specific capacitance properties was also systemically explored. Upon annealing at 250 °C, the maximum specific capacitance was up to 479 F/g (or 1,710 F/g after correcting for the weight percent of Co(OH)2−Ni(OH)2 phase). Annealing temperatures higher than 250 °C may cause the hydroxide to form oxide phase and decrease the surface activity of the oxide, thereby leading to a decline of the specific capacitance.  相似文献   

11.
Nanostructured molybdenum oxide having a particle size in the range of 30–80 nm was prepared by potentiodynamic electrodeposition method, and the effects of H2SO4 concentration on its capacitive behavior were studied by cyclic voltammetry, galvanostatic discharge, and electrochemical impedance spectroscopy. Poor to fair capacitive behaviors were witnessed depending on the electrolyte concentration and conditions of charge/discharge. Increasing acid concentration to 0.02 M had favorable effect, while beyond that, the effect was detrimental. Capacitance around 600 F g−1 was recorded in the potential range of 0 to −0.55 V vs. Ag/AgCl.  相似文献   

12.
Carbon-coated SnS as electrode materials for supercapacitor were synthesized by high-energy ball milling and following co-heating with polyvinyl alcohol. The morphology and structure of prepared carbon-coated SnS were studied by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Electrochemical investigation indicated that carbon-coated SnS presented preferable electrochemical performances than pristine SnS. In comparison to pristine SnS, carbon-coated SnS had better capacitive response in cyclic voltammetry and could deliver larger specific capacitance of 28.47 F/g in galvanostatical charge–discharge process. Enhanced conductivity of carbon-coated SnS revealed by Nyquist plots was considered to be responsible for its enhanced electrochemical performances.  相似文献   

13.
RuO2/Co3O4 thin films with different RuO2 content were successfully prepared on fluorine-doped tin oxide coated glass plate substrates by spray pyrolysis method, and their capacitive behavior was investigated. Electrochemical property was performed by cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectra. The capacitive performance of RuO2/Co3O4 thin films with different RuO2 content corresponded to a contribution from a main pseudocapacitance and an additional electric double-layer capacitance. The specific capacitance of pure Co3O4, 15.5%, 35.6%, and 62.3% RuO2 composites at the current density of 0.2 A g−1 were 394 ± 8, 453 ± 9, 520 ± 10, and 690 ± 14 F g−1, respectively; 62.3% RuO2 composite presented the highest specific capacitance value at various current densities, whereas 35.6% RuO2 composite exhibited not only the largest specific capacitance contribution from RuO2 (C sp RuO2) at the current density of 0.5, 1.0, 1.5, and 2.0 A g−1 but also the highest specific capacitance retention ratio (46.3 ± 2.8%) at the current density ranging from 0.2 to 2.0 A g−1. Electrochemical impedance spectra showed that the contact resistance dropped gradually with the decrease of RuO2 content, and the charge-transfer resistance (R ct) increased gradually with the decrease of RuO2 content.  相似文献   

14.
Ru oxide/carbon fabric composites (Ru oxide/CF) were prepared by impregnating carbon fabric (CF) with a hydrous RuO2 suspension. Their properties were characterized by scanning electron microscopy, impedance spectroscopy, cyclic voltammetry, and constant current discharging. Specific capacitance increased with increasing loading of Ru oxide. The apparent average specific capacitance of the Ru oxide component reached 1,085 F g−1 for a 9.15% loading, with a peak of 1,984 F g−1 at approximately 0.3 V vs Ag/AgCl. The presence of Ru oxide decreases the ionic resistance of the CF and appears to increase its specific capacitance by generating additional electroactive surface functionality.  相似文献   

15.
Binderless carbon nanotubes aerogel (CNAG) composites represent a new class of high-performing electrodes for energy storage applications such as electrochemical double layer capacitors. The composites developed here differ significantly from these previously prepared with dispersion processes. The CNAG material was prepared by a molding procedure that is the synthesis by a chemical vapor deposition method to grow carbon nanotubes directly onto a microfibrous carbon paper substrate. Then the carbon aerogel is synthesized on the carbon nanotubes. The key feature of the method is eliminating the need of controlling the carbon nanotube concentration, which permits optimized dispersion processes to reinforce the aerogel's networks. The CNAG electrode delivered very high specific capacitances of 524 F g−1 in KOH electrolyte and 280 F g−1 in H2SO4 electrolyte. Furthermore, this better integration of carbon nanotubes in the matrix of carbon aerogel improved its resistance to the attack by the electrolyte and conferred an excellent cycle life over 5,000 cycles of charge–discharge in both electrolytes.  相似文献   

16.
Spinel Li4Ti5 − x Zr x O12/C (x = 0, 0.05) were prepared by a solution method. The structure and morphology of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical performances including charge–discharge (0–2.5 V and 1–2.5 V), cyclic voltammetry, and ac impedance were also investigated. The results revealed that the Li4Ti4.95Zr0.05O12/C had a relatively smaller particle size and more regular morphology than that of Li4Ti5O12/C. Zr4+ doping enhanced the ability of lithium-ion diffusion in the electrode. It delivered a discharge capacity 289.03 mAh g−1 after 50 cycles for the Zr4+-doped Li4Ti5O12/C while it decreased to 264.03 mAh g−1 for the Li4Ti5O12/C at the 0.2C discharge to 0 V. Zr4+ doping did not change the electrochemical process, instead enhanced the electronic conductivity and ionic conductivity. The reversible capacity and cycling performance were effectively improved especially when it was discharged to 0 V.  相似文献   

17.
Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.  相似文献   

18.
In this study, poly(2,5-dihydroxyaniline) (PDHA) was successfully prepared by electrochemical method on the surface of active carbon (AC) electrodes. The physical and electrochemistry properties of PDHA/AC composite electrode compared with pure AC electrode were investigated by scanning electronic microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy, cycle life test. From SEM, PDHA presents nanofiber network morphology. The diameter of the nanofiber PDHA is about 200–300 nm. PDHA/AC composite electrode shows redox peaks in CV curve and voltage plateaus in galvanostatic charge–discharge curve, and all these indicate that PDHA/AC composite electrode has more advantages. The maintenance of the capacitance compared to initial cycle capacitance of composite electrode is about 90% during the charge–discharge cycles. In conclusion, The PDHA/AC composite electrode shows much higher specific capacitance (958 F g−1), better power characteristics, longer cycle life. Therefore, PDHA/AC composite electrodes were more promising for application in capacitor. This can be attributed to the introduction of nanofiber PDHA. The effect and role of PDHA in the composite electrodes were also discussed in detail.  相似文献   

19.
The composite film of polypyrrole and functionalized multi-walled carbon nanotubes (PPy/F-MWNTs) was prepared by electropolymerization. MWNTs were functionalized by sonicating with a concentrated solution of H2SO4/HNO3 (3/1, volume ratio) in a water bath for different times. The carbon nanotubes (CNTs) are cut into smaller portions with more functional groups introduced on their surface when the sonicating time (nominated as functionalization time hereafter) is increased. However, the specific capacitance of the composite film reaches a maximum of 240 F g−1 at the scanning rate of 10 mV s−1 when MWNTs are functionalized for 24 h, which is about 205 F g−1, 225 F g−1 and 232 F g−1, respectively, when MWNTs are functionalized for 6 h, 12 h and 48 h. At a current load of 1.0 A g−1, PPy/F-MWNT composite film functionalized for 24 h (PPy/F-MWNTs (24 h)) retains 93.49% of its initial capacitance after 1,000 cycles of galvanostatic charge/discharge, and the discharge efficiency is higher than 98.15% during cycling. High specific capacitance, good rate performance, fast charge/discharge ability and long cycling life are ascribed to the synergistic effect of the two components to form a porous composite film as well as the easy accessibility of counter ions into the film. Therefore, PPy/F-MWNT (24 h) composite film is a kind of promising electrode material for supercapacitors. The mechanism of underfunctionalization and overfunctionalization of carbon nanotubes is also discussed.  相似文献   

20.
Polyaniline (PANI)/carbon aerogel (CA) composite electrode materials were prepared by chemical oxidation polymerization. The morphology of PANI/CA composite was examined by scanning electron microscopy. The results showed that PANI was uniformly deposited onto the surface of porous CA and filled big inner pores of the CA. Electrochemical performance of the composite electrode was studied by cyclic voltammograms and galvanostatic charge/discharge measurements. The results indicated that the PANI/CA composite electrode had much better electrochemical performance, high reversibility, and high charge/discharge properties than CA. Moreover, the results based on cyclic voltammograms showed that the composite material has a high specific capacitance of 710.7 F g−1, while the capacitance of CA electrode was only 143.8 F g−1. Besides, the supercapacitor using the PANI/CA composite as electrode active material showed a stable cycle life in the potential range of −0.2–0.8 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号