首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal oxide semiconductors with lower lying conduction band minimum and superior electron mobility are essential for efficient charge separation and collection in PbS-sensitized solar cells. In the present study, mesoscopic SnO(2) was investigated as an alternative photoanode to the commonly used TiO(2) and examined comprehensively in PbS-sensitized liquid junction solar cells. To exploit the capability of PbS in an optimized structure, cascaded nPbS/nCdS and alternate n(PbS/CdS) layers deposited by a successive ionic layer adsorption and reaction method were systematically scrutinized. It was observed that the surface of SnO(2) has greater affinity to the growth of PbS compared with TiO(2), giving rise to much enhanced light absorption. In addition, the deposition of a CdS buffer layer and a ZnS passivation layer before and after a PbS layer was found to be beneficial for efficient charge separation. Under optimized conditions, cascaded PbS/CdS-sensitized SnO(2) exhibited an unprecedented photocurrent density of 17.38 mA cm(-2) with pronounced infrared light harvesting extending beyond 1100 nm, and a power conversion efficiency of 2.23% under AM 1.5, 1 sun illumination. In comparison, TiO(2) cells fabricated under similar conditions showed much inferior performance owing to the less efficient light harnessing of long wavelength photons. We anticipate that the systematic study of PbS-sensitized solar cells utilizing different metal oxide semiconductors as electron transporters would provide useful insights and promote the development of semiconductor-sensitized mesoscopic solar cells employing panchromatic sensitizers.  相似文献   

2.
We have investigated the electrostatic potential distribution in compact and nanoporous TiO2 films, deposited on conducting F-doped SnO2 substrate (FTO), which are used in dye-sensitized solar cells. The TiO2 films were immersed into aqueous electrolyte and excited from the FTO side by light pulses of a N2 laser while the current response was measured as a function of time. The measurements were carried out as a function of the pH value of the electrolyte and at different electrostatic potentials. For compact TiO2 films, the sign of the transient current at short response times changed when the applied electrostatic potential or the pH value was decreased. This was not observed for mesoporous TiO2 films directly deposited onto the FTO substrate without a compact TiO2 layer. We interpret the results in terms of a macroscopic electric field across the compact layer which is changed by the applied potential or the pH of the electrolyte. In contrast, measurements on mesoporous TiO2 films indicate that the contact region is mainly field-free, and we explain our results by a very sharp electrostatic potential drop within the first layer of particles at the TiO2/FTO interface.  相似文献   

3.
Long-range ordered cubic mesoporous TiO 2 films with 300 nm thickness were fabricated on fluorine-doped tin oxide (FTO) substrate by evaporation-induced self-assembly (EISA) process using F127 as a structure-directing agent. The prepared mesoporous TiO 2 film (Meso-TiO 2) was applied as an interfacial layer between the nanocrystalline TiO 2 film (NC-TiO 2) and the FTO electrode in the dye-sensitized solar cell (DSSC). The introduction of Meso-TiO 2 increased J sc from 12.3 to 14.5 mA/cm (2), and V oc by 55 mV, whereas there was no appreciable change in the fill factor (FF). As a result, the photovoltaic conversion efficiency ( eta) was improved by 30.0% from 5.77% to 7.48%. Notably, introduction of Meso-TiO 2 increased the transmittance of visible light through the FTO glass by 23% as a result of its excellent antireflective role. Thus the increased transmittance was a key factor in enhancing the photovoltaic conversion efficiency. In addition, the presence of interfacial Meso-TiO 2 provided excellent adhesion between the FTO and main TiO 2 layer, and suppressed the back-transport reaction by blocking direct contact between the electrolyte and FTO electrode.  相似文献   

4.
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (110), (010), (101) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximately = (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.  相似文献   

5.
In dye-sensitized TiO2 solar cells, charge recombination processes at interfaces between fluorine-doped tin oxide (FTO), TiO2, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. From this point of view, a high work function material such as titanium deposited by sputtering on FTO has been investigated as an effective blocking layer for preventing electron leakage from FTO without influencing electron injection. X-ray photoelectron spectroscopy analysis indicates that different species of Ti (Ti4+, Ti3+, Ti2+, and a small amount of Ti0) exist on FTO. Electrochemical and photoelectrochemical measurements reveal that thin films of titanium species, expressed as TiOx, work as a compact blocking layer between FTO and TiO2 nanocrystaline film, improving Voc and the fill factor, finally giving a better conversion efficiency for dye-sensitized TiO2 solar cells with ionic liquid electrolytes.  相似文献   

6.
We report a comparison of charge transport and recombination dynamics in dye-sensitized solar cells (DSSCs) employing nanocrystalline TiO(2) and SnO(2) films and address the impact of these dynamics upon photovoltaic device efficiency. Transient photovoltage studies of electron transport in the metal oxide film are correlated with transient absorption studies of electron recombination with both oxidized sensitizer dyes and the redox couple. For all three processes, the dynamics are observed to be 2-3 orders of magnitude faster for the SnO(2) electrode. The origins of these faster dynamics are addressed by studies correlating the electron recombination dynamics to dye cations with chronoamperometric studies of film electron density. These studies indicate that the faster recombination dynamics for the SnO(2) electrodes result both from a 100-fold higher electron diffusion constant at matched electron densities, consistent with a lower trap density for this metal oxide relative to TiO(2), and from a 300 mV positive shift of the SnO(2) conduction band/trap states density of states relative to TiO(2). The faster recombination to the redox couple results in an increased dark current for DSSCs employing SnO(2) films, limiting the device open-circuit voltage. The faster recombination dynamics to the dye cation result in a significant reduction in the efficiency of regeneration of the dye ground state by the redox couple, as confirmed by transient absorption studies of this reaction, and in a loss of device short-circuit current and fill factor. The importance of this loss pathway was confirmed by nonideal diode equation analyses of device current-voltage data. The addition of MgO blocking layers is shown to be effective at reducing recombination losses to the redox electrolyte but is found to be unable to retard recombination dynamics to the dye cation sufficiently to allow efficient dye regeneration without resulting in concomitant losses of electron injection efficiency. We conclude that such a large acceleration of electron dynamics within the metal oxide films of DSSCs may in general be detrimental to device efficiency due to the limited rate of dye regeneration by the redox couple and discuss the implications of this conclusion for strategies to optimize device performance.  相似文献   

7.
A novel type of dye-sensitized cell (DSC) with a passivated titanium sensor electrode located on top of the nanocrystalline titanium dioxide layer has been used to study the temperature dependence of the electron quasi-Fermi level relative to the I3-/I- redox-Fermi level under short circuit conditions. The results show that the Fermi level decreases with increasing temperature (-1.76 meV K(-1)) as predicted for diffusive electron transport at short circuit. A smaller temperature dependence (-0.25 meV K(-1)) of the position of the TiO2 conduction band relative to the I3-/I- redox-Fermi level was deduced from the shifts in the trap distribution. An expression for the temperature dependence of the open circuit voltage, U(photo), has been derived. The experimentally observed temperature dependence of U(photo) gave values of the activation energy (0.25 eV) and preexponential factor (10(8) s(-1)) for the transfer of electrons from the conduction band of the nanocrystalline TiO2 to triiodide ions.  相似文献   

8.
透明TiO2纳米管/FTO电极制备及表征   总被引:5,自引:3,他引:2  
采用射频磁控溅射方法在透明导电玻璃(FTO)上沉积纯钛薄膜, 室温条件下在H3PO4+HF电解液中通过恒压阳极氧化方法得到TiO2纳米管阵列, 并通过场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、UV-Vis透射光谱以及光电化学的方法对纳米管阵列进行了表征. 研究表明, 在电压为20 V、氧化时间为50 min时, 钛薄膜转化为TiO2纳米管阵列, 管长约为380 nm, 内径约为90 nm, 管壁约为15 nm; 再经过500 ℃空气热处理6 h之后得到锐钛矿型的TiO2纳米管/FTO透明电极, 在可见光区的平均透过率约为80%, TiO2禁带宽度为3.28 eV, 发生了蓝移, 带尾扩展到2.6 eV; 此外, 对结晶前后的复合电极分别在暗态和紫外光下进行线性扫描和瞬态光电流测试, 结果表明, 结晶的电极表现出更好的光电转换性能; 施加阳极电压和紫外光照射都能够促进TiO2光生载流子有效分离,使电子迅速传至导电玻璃表面通过外电路形成光电流.  相似文献   

9.
Polymer bulk heterojunction photovoltaic cell was fabricated by inserting a sol–gel derived ZnO thin film as an electron collecting layer between the fluorine-doped SnO2 (FTO) and polymer-fullerene blend active layer. We demonstrated that the performance of device depends on sol concentration and the sol–gel process. Ammonia treatment on the ZnO film improved the efficiency of the device due to the effective removal of acetate group on the film. The short circuit current density was further increased by fine-tuning the thickness of ZnO film. The photovoltaic cell with this structure (FTO/ZnO film/polymer-fullerene blend/Au) produced a power conversion efficiency of 2.01% under simulated AM1.5G illumination of 100 mW/cm2.  相似文献   

10.
提出了一种在掺氟的SnO2(FTO)导电玻璃上组装碳纳米管(CNTs)/Fe-Ni/TiO2多孔复合膜光催化剂的新方法.采用喷涂热解法(SPD)将掺杂镍和铁的含有嵌段聚合物P123的二氧化钛前驱体溶胶涂覆在FTO导电玻璃上,制备Fe-Ni/TiO2多孔膜,再采用化学气相沉积法(CVD)在Fe-Ni/TiO2膜上原位生长CNTs,得到CNTs/Fe-Ni/TiO2多孔复合膜光催化剂.CNTs/Fe-Ni/TiO2复合膜具有多级孔结构特征,在TiO2表面原位生长的CNTs不但具有较好的石墨化结构,且CNTs较均匀地分布在整个膜层的孔中.考察了CNTs/Fe-Ni/TiO2复合膜光催化剂的结构和性能,并通过降解甲基橙溶液评价了复合膜的光催化活性.结果表明,CNTs的复合及铁和镍的掺杂等改性显著提高了TiO2膜材料的光催化活性.  相似文献   

11.
SnO2TiO2 复合半导体纳米薄膜的研究进展*   总被引:5,自引:0,他引:5  
尚静  谢绍东  刘建国 《化学进展》2005,17(6):1012-1018
本文概述了SnO2TiO2 复合半导体纳米薄膜的发展历史和研究现状,对比分析了“混合”、“核壳”和“叠层”3 种复合薄膜的结构和性能特点,着重论述了叠层结构的SnO2 /TiO2复合薄膜的光电化学和光催化特性。结合作者的研究工作,探讨了SnO2 /TiO2双层复合薄膜上下层厚度对其光催化活性的影响,指出复合薄膜光催化活性的提高可归因于电子从TiO2 向SnO2 的迁移。最后对SnO2 /TiO2复合薄膜的局限性和发展潜势做一简要分析,强调了该复合薄膜本身的应用特点。  相似文献   

12.
Surface modification plays a crucial role in improving the efficiency of dye-sensitized solar cells (DSSCs), but the reported surface treatments are in general superior to the untreated TiO(2) but inferior to the typical TiCl(4)-treated TiO(2) in terms of solar cell performance. This work demonstrates a two-step treatment of the nanoporous titania surface with strontium acetate [Sr(OAc)(2)] and TiCl(4) in order, each step followed by sintering. An electronically insulating layer of SrCO(3) is formed on the TiO(2) surface via the Sr(OAc)(2) treatment and then a fresh TiO(2) layer is deposited on top of the SrCO(3) layer via the TiCl(4) treatment, corresponding to a double layer of Sr(OAc)(2)/TiO(2) coated on the TiO(2) surface. As compared to the typical TiCl(4)-treated DSSC, the Sr(OAc)(2)-TiCl(4) treated DSSC improves short-circuit photocurrent (J(sc)) by 17%, open-circuit photovoltage (V(oc)) by 2%, and power conversion efficiency by 20%. These results indicate that the Sr(OAc)(2)-TiCl(4) treatment is better than the often used TiCl(4) treatment for fabrication of efficient DSSCs. Charge density at open circuit and controlled intensity modulated photocurrent/photovoltage spectroscopy reveal that the two electrodes show almost same conduction band level but different electron diffusion coefficient and charge recombination rate constant. Owing to the blocking effect of the SrCO(3) layer on electron recombination with I(3)(-) ions, the charge recombination rate constant of the Sr(OAc)(2)-TiCl(4) treated DSSC is half that of the TiCl(4)-treated DSSC, accounting well for the difference of their V(oc). The improved J(sc) is also attributed to the middle SrCO(3) layer, which increases dye adsorption and may improve charge separation efficiency due to the blocking effect of SrCO(3) on charge recombination.  相似文献   

13.
Nanoporous-walled tungsten oxide (WO(3)) nanotubes (NTs), which had a more positive conduction band edge level compared to that of TiO(2), were applied to various organic dyes for dye-sensitized solar cells (DSSCs). The dye-sensitized WO(3) NTs displayed photosensitization for the organic dyes whose lowest unoccupied molecular orbital (LUMO) level was relatively positive to the conventional TiO(2) electrode and, thus, not applicable for electron injection to the TiO(2) electrode. Electron transport time and electron lifetime for the WO(3) electrode in the DSSCs were investigated. In comparison to the DSSCs based on TiO(2), SnO(2), and In(2)O(3), the WO(3) DSSCs displayed the longest lifetime. On the other hand, non-diffusion-like electron transport may be an issue to apply WO(3) for the DSSCs.  相似文献   

14.
Photoinduced electron injection from the sensitizer Ru(dcbpy)2(NCS)2 (RuN3) into SnO2 and TiO2 nanocrystalline films occurs by two distinct channels on the femto- and picosecond time scales. The faster electron injection into the conduction band of the different semiconductors originates from the initially excited singlet state of RuN3, and occurs in competition with intersystem crossing. The rate of singlet electron injection is faster to TiO2 (1/55 fs-1) than to SnO2 (1/145 fs-1), in agreement with higher density of conduction band acceptor states in the former semiconductor. As a result of competition between the ultrafast processes, for TiO2 singlet, whereas for SnO2 triplet electron injection is dominant. Electron injection from the triplet state is nonexponential and can be fitted with time constants ranging from approximately 1 ps (2.5 ps for SnO2) to approximately 50 ps for both semiconductors. The major part of triplet injection is independent of the semiconductor and is most likely controlled by intramolecular dynamics in RuN3. The overall time scale and the yield of electron injection to the two semiconductors are very similar, suggesting that processes other than electron injection are responsible for the difference in efficiencies of solar cells made of these materials.  相似文献   

15.
The spatial dependence of the electron quasi-Fermi level (QFL) in the interior of dye sensitized nanocrystalline solar cells (DSC) under short circuit conditions can be inferred from calculations based on a diffusive electron transport model. The calculations predict that the difference in the QFL between the electrolyte and contact sides of the TiO(2) layer under short circuit conditions at 1 sun could be as much as 0.5-0.7 eV. The predicted QFL profiles depend on assumptions made about energy positions, electron mobility, and the conduction band density of states. In this work, the position of the QFL at the electrolyte side of the dye sensitized TiO(2) film in a DSC has been measured using a thin passivated titanium contact deposited on top of the nanocrystalline TiO(2) by evaporation. The method allows changes in the electron QFL at all points on the IV characteristic of the cell to be monitored under dark and photostationary conditions. In addition, cells incorporating the titanium electrode can give information about the behavior of the QFL under dynamic conditions.  相似文献   

16.
采用水热法制备出Al3+掺杂二氧化钛薄膜,通过玻璃棒涂于导电玻璃上,在450°C的温度下烧结并将其用N3染料敏化制成染料敏化太阳能电池(DSSCs).通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电镜(SEM)及DSSCs测试系统对其进行了测试表征,研究了Al3+掺杂对TiO2晶型及染料敏化太阳能电池的光电性能影响.XPS数据显示Al3+成功掺杂到了TiO2晶格内,由于Al3+的存在,对半导体内电子和空穴的捕获及阻止电子/空穴对的复合发挥重要作用.莫特-肖特基曲线显示掺杂Al3+后二氧化钛平带电位发生正移,并导致电子从染料注入到TiO2的驱动力提高.DSSCs系统测试结果表明,Al3+掺杂的TiO2薄膜光电效率达到6.48%,相对于无掺杂的纯二氧化钛薄膜光电效率(5.58%),其光电效率提高了16.1%,短路光电流密度从16.5mA·cm-2提高到18.2mA·cm-2.  相似文献   

17.
利用溶胶-凝胶提拉成膜法制备了TiO2,SnO2,Ag/SnO2,Ag/SnO2/TiO2纳米薄膜半导体催化剂.采用粉末电导法初步研究了纳米半导体薄膜催化剂的表面结构,测定了表面态能级相对于半导体导带边的位置.实验表明:四种催化剂在不同的表面能级位置都存在表面态:TiO2具有两类表面态,其能量分别为0.75eV和0.58eV.Ag/SnO2/TiO2由于Ag的担载,出现更负的表面态能级(0.33eV).这将会显著提高导带电子密度,加速光催化反应速率.  相似文献   

18.
Metal-substituted phthalocyanine thin films such as copper-phthalocyanine (CuPc) are often used as photo-active and hole transporting layers (HTLs) in fully organic photovoltaic devices. In this work, CuPc is vacuum sublimated on an electron acceptor layer of mesoporous titania (TiO(2)) for the formation of hybrid TiO(2):CuPc solar cell devices. The performance of these hybrid solar cell devices was demonstrated without and with dye sensitization at the TiO(2):CuPc interface. The charge separation and photocurrent contribution at the interfaces in these multilayer hybrid devices was studied by using a variety of optoelectrical and photophysical characterization techniques. It is important to understand the fundamental interface properties of these multilayer hybrid solar cell devices for optimized performance.  相似文献   

19.
We demonstrate the fabrication of a nanoporous titania (NP-TiO(2)) network structure by using a polystylene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer template and modifying the surface of NP-TiO(2) with ionic liquids (ILs), bmim-BF(4) and benmim-Cl. The effect of the molecular weight of PS-b-P4VP on the morphology of the NP-TiO(2) and IL-modified NP-TiO(2) are characterized by scanning electron microscopy and contact angle measurements. Subsequently, hybrid solar cells are fabricated using MEH-PPV and NP-TiO(2), and the effect of IL layers and IL concentrations on device performances are evaluated under AM 1.5 G illumination. The devices containing bmim-BF(4) and benmim-Cl show drastically enhanced open circuit voltages (V(oc)) of 1.05 V and 0.91 V, respectively, while the reference device without an IL layer exhibits a V(oc) of 0.60 V. Significantly improved V(oc) can be attributed to the change in interfacial energy levels by formation of ionic double layers at the TiO(2)/IL and at the IL/MEH-PPV interfaces. We also observed the trend that short circuit current decreased and V(oc) increased with increasing IL concentration, which is ascribed to interruption of charge transfer from MEH-PPV to TiO(2) and the change in interfacial energy level by shifting the vacuum level, respectively.  相似文献   

20.
Density functional theory (DFT) in connection with ultrasoft pseudopotential (USP) and generalized gradient spin-polarized approximations (GGSA) is applied to calculate the adsorption energies and structures of monolayer-adsorbed InN on the TiO(2) anatase (101) surface and the corresponding electronic properties, that is, partial density of states (PDOS) for surface and bulk layers of the TiO(2) anatase (101) surface and monolayer-adsorbed InN, to shed light on the possible structural modes for initial photoexcitation within the UV/vis adsorption region followed by fast electron injection through the InN/TiO(2) interface for an InN/TiO(2)-based solar cell design. Our calculated adsorption energies found that the two most probable stable structural modes of monolayer-adsorbed InN on the TiO(2) anatase (101) surface are (1) an end-on structure with an adsorption energy of 2.52 eV through N binding to surface 2-fold coordinated O (O(cn2)), that is, InN-O(cn2), and (2) a side-on structure with an adsorption energy of 3.05 eV through both N binding to surface 5-fold coordinated Ti (Ti(cn5)) and In bridging two surface O(cn2), that is, (O(cn2))(2)-InN-Ti(cn5). Our calculated band gaps for both InN-O(cn2) and (O(cn2))2-InN-Ti(cn5) (including a 1.0-eV correction using a scissor operator) of monolayer-adsorbed InN on the TiO(2) anatase (101) surface are red-shifted to 1.7 eV (730 nm) and 2.3 eV (540 nm), respectively, which are within the UV/vis adsorption region similar to Gratzel's black dye solar cell. Our analyses of calculated PDOS for both surface and bulk layers of the TiO(2) anatase (101) surface and monolayer-adsorbed InN on the TiO(2) anatase (101) surface suggest that the (O(cn2))(2)-InN-Ti(n5) configuration of monolayer-adsorbed InN on the TiO(2) anatase (101) surface would provide a more feasible structural mode for the electron injection through the InN/TiO(2) interface. This is due to the presence of both occupied and unoccupied electronic states for monolayer-adsorbed InN within the band gap TiO(2) anatase (101) surface, which will allow the photoexcitation within the UV/vis adsorption region to take place effectively, and subsequently the photoexcited electronic states will overlap with the unoccupied electronic states around the lowest conduction band of the TiO(2) anatase (101) surface, which will ensure the electron injection through the InN/TiO(2) interface. Finally, another thing worth our attention is our preliminary study of double-layer-adsorbed InN on the TiO(2) anatase (101) surface, that is, (O(cn2))(2)-(InN)(2)-Ti(cn5), with a calculated band gap red-shifted to 2.6 eV (477 nm) and a different overlap of electronic states between double-layer-adsorbed InN and the TiO(2) anatase (101) surface qualitatively indicated that there is an effect of the thickness of adsorbed InN on the TiO(2) anatase (101) surface on both photoexcitation and electron injection processes involved in the photoinduced interfacial electron transfer through InN/TiO(2). A more thorough and comprehensive study of different layers of InN adsorbed in all possible different orientations on the TiO(2) anatase (101) surface is presently in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号