首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Magnetic NiFe2O4 (NiFe) nanoparticles were synthesized via a facile chemical reaction between Ni(NO3)2 and Fe(NO3)3. Different percents of NiFe nanoparticles were then added to polystyrene (PS) matrix. Nanoparticles were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The magnetic properties of the samples were also investigated using an alternating gradient force magnetometer. The nanoparticles exhibit ferromagnetic behaviour at room temperature, with a saturation magnetization of 20.8 emu/g and a coercivity of 99.6 Oe. Preparation of NiFe2O4 -PS nanocomposite leads to decrease in the coercivity.  相似文献   

2.
以有机碱四甲基氢氧化铵(TMAH)为沉淀剂合成了纳米Fe3O4和Co2+掺杂的纳米Fe3O4粒子。分别讨论了碱用量,铁盐溶液浓度,反应温度,有机碱及PEG-4000的分散性等因素对纳米Fe3O4的形貌影响。结果表明,所合成的纳米Fe3O4为30nm左右的反尖晶石型面心立方结构,有机碱除了起沉淀剂作用,还能够提高纳米Fe3O4的分散性。本文还讨论了不同Co2+掺入量的纳米Fe3O4粒子的磁性质,结果表明Co2+掺杂的纳米Fe3O4粒子的矫顽力在不同掺入量的下有较大的改变。当Co2+掺入量为10.0%时,纳米Fe3O4的矫顽力达到最大值,为1628Oe。  相似文献   

3.
Novel magnetic polyurethane flexible foam nanocomposites were synthesized by incorporation of aminopropyltriethoxysilane (APTS) functionalized magnetite nanoparticles (MNPs) via one-shot method. The functionalized MNPs (Fe3O4@APTS) were synthesized by co-precipitation of the Fe2+ and Fe3+ with NH4OH and further functionalization with APTS onto the surface of MNPs by sol–gel method. The magnetic core-shell NPs were used up to 3.0 % in the foam formulation and the magnetic nanocomposites prepared successfully. The results of thermogravimetric analysis (TGA) showed an increasing in thermal stability of polyurethane nanocomposite foam at initial, 5 and 10 %, and maximum thermal decomposition temperatures by incorporation of Fe3O4@APTS. In addition SEM images revealed the uniformity of the foam structures and decreasing in pore sizes. Furthermore, VSM result showed super paramagnetic behavior for Fe3O4@APTS-PU nanocomposites.  相似文献   

4.
Monodispersed ??-Fe2O3 nanoparticles modified by sodium dodecylbenzene sulfonate (SDBS) surfactant and assisted by glycerol have been successfully synthesized via a hydrothermal process using FeCl3·6H2O as the starting precursor. These nanoparticles possess good crystallinity and have an average particle size of 100 nm. The as-prepared products are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and a superconducting quantum interference device magnetometer. SDBS and glycerol played an important role in controlling the final morphology of the products. Magnetic hysteresis measurements reveal that monodispersed ??-Fe2O3 nanoparticles exhibit normal ferromagnetic behaviors with the remanent magnetization and coercivity of 0.2389 emu/g and 2339.0 Oe at room temperature.  相似文献   

5.
以十八烯为溶剂、乙酰丙酮铁为铁源,并在油酸、油胺的辅助作用下,通过热分解法成功合成了单分散Fe3O4纳米颗粒。讨论了实验参数如反应温度、表面活性剂的量和种类、溶剂、油酸、油胺对单分散Fe3O4纳米颗粒的尺寸及形貌的影响。利用X射线衍射(XRD)、透射电子显微镜(TEM)、选区电子衍射(SAED)和高分辨透射电子显微镜(HRTEM)对所得产物的物相、结构、尺寸和形貌进行了表征分析。通过振动样品磁强计(VSM)表征产物磁性能,表明在室温下,Fe3O4纳米颗粒的饱和磁化强度(Ms)和矫顽力(Hc)分别为74.0 emu/g,72.6 Oe。  相似文献   

6.
Poly(3-thiophene acetic acid)/Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of poly(3-thiophene acetic acid) (P3TAA). Structural, surface, morphological, thermal properties and conductivity characterization/evaluation of the nanocomposite were performed by XRD, FT-IR, TEM, TGA, and conductivity measurements, respectively. The capping of P3TAA around Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of the carboxylate and the nanoparticle surface through bidentate binding. The crystallite and particle size were obtained as 9 ± 2 nm and 11 ± 1 nm from XRD line profile fitting and TEM image analysis, respectively, which reveal nearly single crystalline nature of Fe3O4 nanoparticles. Magnetization measurements reveal that P3TAA coated magnetite particles do not saturate at higher fields. There is no coercivity and remanence revealing superparamagnetic character. Magnetic particle size calculated from the theoretical fitting as 9.1 nm which coincides the values determined from TEM micrographs and XRD line profile fitting. The comparison to the TEM particle size reveals slightly modified magnetically dead nanoparticle surface.  相似文献   

7.
Rod-like assembled magnetite (Fe3O4) nanoparticles (NPs) were successfully synthesized in a one-pot process using a polysiloxane template derived from a dialkoxysilane. The assembly was constructed using the thiol-ene click reaction between thiol groups on the polysiloxane chain and allyl groups on Fe3O4 NPs. The thiol-containing polysiloxane chain and the allyl-containing Fe3O4 NPs were synthesized by the hydrolysis–condensation of 3-mercaptopropyl(dimethoxy)methylsilane and iron (III) allylacetylacetonate, respectively. Fe3O4 NPs of around 5 nm were uniformly dispersed on the siloxane rods and exhibited neither remanent magnetization nor coercivity. A fluid containing a dispersion of rod-like assembled Fe3O4 NPs showed yield stress even without the application of an external magnetic field, whereas spherical Fe3O4 NPs exhibited no yield stress. The rod-like assembled Fe3O4 NPs on anisotropic siloxane clearly exhibited typical magnetorheological behavior.  相似文献   

8.
We describe a magnetic nanocomposite that consists of Fe3O4/carbon nanosphere/polypyrrole (Fe3O4/CNS/PPy). The synthesized nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The nanocomposite was successfully applied to extract of the polycyclic aromatic hydrocarbons (PAHs) from water samples. Compared to Fe3O4/PPy, the Fe3O4/CNS/PPy nanocomposite exhibits improved properties in terms of extraction. The amount of adsorbent, salt effect, extraction time, desorption time, type, and the volume of desorption solvent were optimized. Following the desorption of the extracted analytes, the PAHs (i.e., naphthalene, 2-methylnaphthalene, 2-bromonaphthalene, fluorene, and anthracene) were quantified by gas chromatography–flame ionization detector. The PAHs can be determined in 0.05–100.00 ng mL?1 concentration range, with limits of detection (at an S/N ratio of 3) ranging from 0.01 to 0.05 ng mL?1. The repeatability of the method was investigated with relative standard deviations of lower than 9.9% (n = 5). Also, the recoveries from spiked real water samples were in the range of 88.9–99.0%. The results indicate that the novel material can be successfully applied for the extraction and analysis of PAHs from water samples.  相似文献   

9.
In this study, silver nanoparticles (Ag NPs) were decorated on the surface of magnetic nanoparticles in an eco-friendly pathway applying Mentha extract as reducing/stabilizing agent. The morphological and physicochemical features of the prepared Ag/Fe3O4nanocomposite were determined using several advanced techniques. Hence, our protocol is green and advantageous in terms of- i) biochemical modified biocompatible nanocomposite; ii) nanomaterial providing high surface area and larger number reactive sites; iii) very simplistic synthetic procedure; vi) very low load of metal in the composite and v) high yield in short time. In the medicinal part, the anticancer properties of Ag/Fe3O4 nanocomposite against lung cancer cell lines were determined. The free radical for the antioxidant effects was DPPH. The IC50 of Ag/Fe3O4 nanocomposite was 200 µg/ml in the antioxidant test. The IC50 of the Ag/Fe3O4 nanocomposite were 183, 176, 169, and 125 µg/mL against lung cancer (NCI-H661, NCI-H1975, NCI-H1573, and NCI-H1563) cell lines, respectively. In addition, the current study offer that Ag/Fe3O4 nanocomposite could be a new potential adjuvant chemopreventive and chemotherapeutic agent against cytotoxic cells.  相似文献   

10.
We report a new strategy to immobilize a bromine source on the surface of magnetic Fe3O4 nanoparticles (Fe3O4 MNPs-DETA/Benzyl-Br3) leading to a magnetically recoverable catalyst, which exhibits high catalytic efficiency in oxidative coupling of thiols to the disulfides (89–98%). The Fe3O4 MNPs-DETA/Benzyl-Br3 catalyst was fabricated by anchoring 3-chloropropyltrimethoxysilane (CPTMS) on magnetic Fe3O4 nanoparticles, followed with N-benzylation and reaction with bromine in tetrachloridecarbon. The resulting nanocomposite was analyzed by a series of characterization techniques such as FT-IR, SEM, TGA, VSM and XRD. The catalyst could be recovered via magnetic attraction and could be recycled at least 5 times without appreciable decrease in activity.  相似文献   

11.
Rice husks (RHs), a kind of biowastes, are firstly hydrothermally pretreated by HCl aqueous solution to achieve promising macropores, facilitating subsequently impregnating ferric nitrate and urea aqueous solution, the precursor of Fe3O4 nanoparticles. A Fe3O4/rice husk-based maco-/mesoporous carbon bone nanocomposite is finally prepared by the high-temperature hydrothermal treatment of the precursor-impregnated pretreated RHs at 600 °C followed by NaOH aqueous solution treatment for dissolving silica and producing mesopores. The macro-/mesopores are able to provide rapid lithium ion-transferring channels and accommodate the volumetric changes of Fe3O4 nanoparticles during cycling as well. Besides, the macro-/mesoporous carbon bone can offer rapid electron-transferring channels through directly fluxing electrons between Fe3O4 nanoparticles and carbon bone. As a result, this nanocomposite delivers a high initial reversible capacity of 918 mAh g?1 at 0.2 A g?1 and a reversible capacity of 681 mAh g?1 remained after 200 cycles at 1.0 A g?1. The reversible capacities at high current densities of 5.0 and 10.0 A g?1 still remain at high values of 463 and 221 mAh g?1, respectively.  相似文献   

12.
Pure Fe3O4 and Mn-doped Fe3O4 nanoparticles were synthesized by simple wet chemical reduction technique using nontoxic precursors. Manganese doping of two concentrations, 10 and 15%, were employed. All the three synthesized nanoparticles were characterized by stoichiometry, crystal structure, and surface morphology. Thermal studies on as-synthesized nanoparticles of pure ferrite (Fe3O4) and manganese (Mn) doped ferrites were carried out. The thermal analysis of the three as-synthesized nanoparticles was done by thermogravimetric (TG), differential thermogravimetric, and differential thermal analysis techniques. All the thermal analyses were done in nitrogen atmosphere in the temperature range of 308–1233 K. All the thermocurves were recorded for three heating rates of 10, 15, and 20 K min?1. The TG curves showed three steps thermal decomposition for Fe3O4 and two steps thermal decompositions for Mn-doped Fe3O4 nanoparticles. The kinetic parameters of the three as-synthesized nanoparticles were evaluated from the thermocurves employing Kissinger–Akahira–Sunose (KAS) method. The thermocurves and evaluated kinetic parameters are discussed in this paper.  相似文献   

13.
In this study, two types of magnetic polyurethane (PU) elastomer nanocomposites using polycaprolactone (PCL) and polytetramethylene glycol (PTMG) as polyols were synthesized by incorporating thiodiglycolic acid surface modified Fe3O4 nanoparticles (TSM‐Fe3O4) into PU matrices through in situ polymerization method. TSM‐Fe3O4 nanoparticles were prepared using in situ coprecipitation method in alkali media and were characterized by X‐ray diffraction, Fourier Transform Infrared Spectrophotometer, Transmission Electron Microscopy, and Vibrating Sample Magnetometer. The effects of PCL and PTMG polyols on the properties of the resultant PUs were studied. The morphology and dispersion of the nanoparticles in the magnetic nanocomposites were studied by Scanning Electron Microscope. It was observed that dispersion of nanoparticles in PTMG‐based magnetic nanocomposite was better than PCL‐based magnetic nanocomposite. Furthermore, the effect of polyol structure on thermal and mechanical properties of nanocomposite was investigated by Thermogravimetric Analysis and Dynamic Mechanical Thermal Analysis. A decrease in the thermal stability of magnetic nanocomposites was found compared to pure PUs. Furthermore, DMTA results showed that increase in glass transition temperature of PTMG‐based magnetic nanocomposite is higher than PCL‐based magnetic nanocomposite, which is attributed to better dispersion of TSM‐Fe3O4 nanoparticles in PTMG‐based PU matrix. Additionally, magnetic nanocomposites exhibited a lower level of hydrophilicity compared to pure PUs. These observations were attributed to the hydrophobic behavior of TSM‐Fe3O4 nanoparticles. Moreover, study of fibroblast cells interaction with magnetic nanocomposites showed that the products can be a good candidate for biomedical application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this contribution, a novel label-free electrochemical biosensor for diclofenac (DCF) detection was developed using the unique properties of acid-oxidized carbon nanotubes (CNT), graphene oxide (GO), and Fe3O4 magnetic nanomaterials. The GO sheets and CNT were interlinked by ultrafine Fe3O4 nanoparticles forming three-dimensional (3D) architectures. The characterization of the nanocomposite was studied by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), and wavelength-dispersive X-ray (WDX) spectroscopy. Initially, aminated detection probe (aptamer) was surface-confined on the CNT/GO/Fe3O4 nanocomposite via the covalent amide bonds formed by the carboxyl groups on the CNT/GO and the amino groups on the oligonucleotides at the 5′ end. Our constructed folding-based electrochemical sensor was used for detection of target molecule utilizing structure-switching aptamers. Signaling arose from changes in electron transfer efficiency upon target-induced changes in the conformation of the aptamer probe. These changes were readily monitored using differential pulse voltammetry technique. This sensor exhibited binding affinities ranging from 100 to 1300 pM with a low detection limit of 33 pM.  相似文献   

15.
In that work, we have described the synthesis of novel Cu NPs decorated polyethylene glycol (PEG2000) coated magnetic nanoparticles (Fe3O4/PEG2000/Cu NPs) in an eco-friendly pathway applying Green Tea extract as reducing/stabilizing agent. The morphological and physicochemical features of the prepared nanocomposite were determined using several advanced techniques like ICP-OES, FE-SEM, EDX, atomic mapping, TEM, VSM, and XRD studies. In the antioxidant test, the IC50 of Fe3O4/PEG2000/Cu nanocomposite and BHT against DPPH free radicals were 198 and 85 µg/mL, respectively. In the cellular and molecular part of the recent study, the treated cells with Fe3O4/PEG2000/Cu nanocomposite were assessed by MTT assay for 48 h about the cytotoxicity and anti-human gastric cancer properties on normal (HUVEC) and gastric cancer cell lines i.e. NCI-N87 and MKN45. The IC50 of Fe3O4/PEG2000/Cu nanocomposite were 316 and 131 µg/mL against NCI-N87 and MKN45 cell lines, respectively. The viability of malignant gastric cell line reduced dose-dependently in the presence of Fe3O4/PEG2000/Cu nanocomposite. It seems that the anti-human gastric cancer effect of recent nanoparticles is due to their antioxidant effects.  相似文献   

16.
ε-Fe2O3/SiO2 nanocomposite was prepared by novel solgel method using single precursor for both nanoparticles and matrix. This method allows to prepare the samples free of α-Fe2O3 with 40% of Fe2O3 in SiO2. Nanoparticles of 12 nm diameter were obtained by annealing at 1,000 °C. The samples were characterized by powder X-ray diffraction and transmission electron microscopy. Mössbauer spectroscopy identified ε-Fe2O3 as the only magnetically ordered phase at room temperature. Magnetic measurements revealed progressive necking of hysteresis loops measured at 300 and 2 K. In both cases the intrinsic coercivity reaches only 0.25 T. Measurements up to 14 T shows monotonous decreasing trend of saturated magnetization with increasing temperature.  相似文献   

17.
Metal–organic framework sorbents [MIL-100(Fe), MOF-235(Fe)], Fe3O4 nanoparticles and metal–organic framework loaded on iron oxide nanoparticles [Fe3O4@MIL-100(Fe) and Fe3O4@MOF-235(Fe)] were prepared and examined for ciprofloxacin (CIP) removal. The results showed that sorption kinetics of CIP by Fe3O4@MIL-100(Fe) follows the Elovich and pseudo-second-order models indicating that the sorption is both chemisorption and physical adsorption, whereas the sorption to other sorbents occurs mainly by physical sorption. The sorption isotherm studies revealed that Langmuir model provided the best fit to all the experimental data. The thermodynamic studies showed that CIP removal is spontaneous (Δ = 2.28 kJ/mol) and endothermic (Δ = 18.39 kJ/mol). It was also found that among the sorbents investigated for CIP removal, Fe3O4@MIL-100(Fe) has the highest maximum monolayer adsorption capacity of 322.58 mg/g.  相似文献   

18.
Shuttle-like α-Fe2O3 nanoparticles have been successfully synthesized via a new soft-template route using polyethylene glycol (PEG) as polymer, cetyltrimethylammonium bromide (CTAB) as surfactant and FeCl3·6H2O as iron source materials. Meanwhile, spherical α-Fe2O3 nanoparticles are also fabricated under the similar conditions without surfactant and polymer. The resultant products are characterized by means of thermalgravimetric analysis (TGA), powder X-ray diffraction (XRD), infrared (IR) spectroscopy, transmission electron micrograph (TEM), X-ray photoelectron spectra (XPS) and magnetization measurements. The homogeneous α-Fe2O3 nanoparticles with shuttle-like shape have an average length of 120 nm and a mean diameter of about 50 nm in the middle part (an average aspect ratio of about 2.5) whereas spherical α-Fe2O3 nanoparticles have a mean particle diameter of about 35 nm. Magnetic hysteresis measurements reveal that shuttle-like α-Fe2O3 nanoparticles display normal ferromagnetic behaviors while spherical α-Fe2O3 nanoparticles exhibit weak ferromagnetic behaviors at room temperature. The two types of α-Fe2O3 exhibit hysteretic features with the remanence and coercivity of 0.156 emu/g and 664 Oe, 0.048 emu/g and 110 Oe, respectively. The higher remanent magnetization and coercivity of shuttle-like α-Fe2O3 nanoparticles may be associated with the aspect ratio of α-Fe2O3 since shape anisotropy would exert a tremendous influence on their magnetic properties.  相似文献   

19.
Bimagnetic Pt3Co/Fe3O4 nanocomposite is synthesized in aqueous solution. The nanoparticles are characterized with TEM, FTIR, and magnetic measurements. The as‐synthesized nanocomposite exhibits ferromagnetic properties at room temperature due to the exchange coupling between Pt3Co and Fe3O4. Magnetic properties of Pt3Co/Fe3O4 nanoparticle can be tuned by varying of the molar ratio of iron to platinum. Pt3Co/Fe3O4 nanoparticles exhibit higher saturation magnetization when the molar ratio of iron to platinum is 1.  相似文献   

20.
The simple preparation of Co3O4 nanoparticles from a solid metallorganic molecular precursor [bis(salicylaldehydeato)cobal(II)]; [Co(sal)2] has been achieved via two simple steps: firstly, the [Co(sal)2] precursor was precipitated from the reaction of cobalt(II) acetate and salicylaldehyde; in propanol under nitrogen condition; then, cubic phase Co3O4 nanoparticles with the size of mostly 20–30 nm could be produced by thermal treatment of the [Co(sal)2] in air at 500 °C for 5 h. The as-synthesized products were characterized by powder XRD, FT-IR, TEM and SEM. The results confirm that the resulting oxide was pure single-crystalline Co3O4 nanoparticles. The optical absorption spectrum indicates that the direct band gaps of Co3O4 nanoparticles are 1.53 and 2.02 eV. The optical property test indicates that the absorption peak of the nanoparticles shifts towards short wavelength, and the blue shift phenomenon might be ascribed to the quantum effect. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors the enhanced coercivity (H c ) and decreased saturation magnetization (M s ) in contrast to their respective bulk materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号