首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
在表面活性剂油酸和油胺,液相环境二苄醚体系中,利用多元醇还原法,采用1,2-十二烷二醇还原前驱体乙酰丙酮铁Fe(acac)3,通过表面活性剂、金属前驱体以及液相环境的共同作用,制备出了单分散片状六边形Fe3O4纳米颗粒。分析了表面活性剂以及还原剂多元醇对纳米颗粒尺寸及形貌的影响。TEM表征结果显示:与未使用表面活性剂的情况相比,油酸和油胺的加入抑制了颗粒的生长,使颗粒尺寸从24.2 nm降低到10.7 nm;颗粒形貌多样化,出现了片状六边形形貌的Fe3O4纳米颗粒。磁性能检测表明: Fe3O4纳米颗粒具有高饱和磁化强度(Ms=88 emu/g)和零剩磁的特点,有望作为磁标记材料应用在生物检测上  相似文献   

2.
采用一种新的相转移法制备了双层包裹的Fe3O4正己烷磁流体.首先,以油酸钠作为表面改性剂,对化学共沉淀制备的Fe3O4纳米颗粒进行双层包裹,制备了稳定的水基磁流体,在此基础上,通过加入乙酸(CH3COOH)将亲水颗粒转变为亲油颗粒,并用萃取的方法将亲油颗粒成功转移到正己烷相.傅里叶变换红外光谱(FTIR)表明,通过调整pH值可以将双层包裹的磁性颗粒外层带有的亲水基团油酸根R—COO-转变为亲油的R—COOH,从而使得包裹的颗粒既可溶于极性载液也可溶于非极性载液.利用X射线衍射仪(XRD)、振动样品强磁计(VSM)和透射电子显微镜(TEM)对Fe3O4颗粒的形貌、组成及磁流体的性质进行了表征.结果表明,利用这种新的相转移法可以保证颗粒在单分散下充分包裹并避免团聚.制备的正己烷磁流体稳定性好,长期放置未发生分层现象.通过蒸发正己烷,可以得到不同固含量的磁流体并可以将其与其它油基载液互溶,从而得到不同载液的Fe3O4油基磁流体.  相似文献   

3.
报道了一种低温(60℃~100℃)溶剂控制合成立方相Fe3O4及正交相FeOOH等纳米材料的简易方法,即采用氯化亚铁为铁源,六亚甲基四胺为弱碱源,借助回流装置,通过改变反应温度、溶剂(分别以水、水与乙醇、水与乙二醇为溶剂)、时间等实验条件,合成出正交相的FeOOH、正交相FeOOH与立方相Fe3O4的混合物以及立方相Fe3O4磁性纳米粒子.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、物性磁测量系统以及穆斯堡尔光谱仪对产物进行了表征和分析.结果显示,所制备的混合相磁性纳米粒子为片状和棒状,而立方相的的Fe3O4磁性纳米粒子呈颗粒状.磁测量表明立方相的Fe3O4比混合相磁性纳米粒子有更大的磁饱和强度,对立方相的Fe3O4纳米粒子进行穆斯堡尔谱分析可以明确判断所合成的样品是Fe3O4,而不是γ-Fe2O3.此外,通过对实验过程、现象及表征结果等的分析;对不同条件下Fe3O4磁性纳米粒子的形成机理做了初步探讨.  相似文献   

4.
不同形貌的Fe3O4微-纳米粒子的溶剂热合成   总被引:1,自引:0,他引:1  
以FeCl3?6H2O为铁源,用乙二醇或1,2丙二醇为溶剂,PEG为表面活性剂,以及NaOH或KOH为碱源,采用溶剂热法,制备出具有亲水性、分散性较好、超顺磁性和形貌各异的Fe3O4微、纳米颗粒,并对其形貌、结构和磁性进行了表征. 结果表明,产物是均为立方晶系Fe3O4,其颗粒尺寸从20nm-600nm可调. 我们观察到碱源的种类和用量、反应时间、溶剂等对产物形貌的影响,其中碱的用量影响最大. 本文对不同形貌Fe3O4的形成过程进行了探讨,并提出了合理的解释. 所得到的室温下呈现超顺磁性的Fe3O4粒子可以初步满足了生物医学中的应用.  相似文献   

5.
醇热解法合成超顺磁性氧化铁纳米粒子及其性能   总被引:1,自引:1,他引:0  
赵方圆  张宝林 《应用化学》2012,29(2):186-190
以甲氧基聚乙二醇同时作为溶剂、还原剂及修饰剂,在高温下分解乙酰丙酮铁,制备了纳米Fe3O4粒子,采用透射电子显微镜和X射线衍射分析表征材料的形貌和相组成,傅里叶变换红外光谱仪表征材料的表面修饰物,超导量子干涉仪测试合成的纳米粒子的磁性能,纳米粒度与zeta电势分析仪测试磁性纳米粒子在水中的zeta电势。 结果表明,纳米Fe3O4粒子的大小为(10.1±1.6) nm,粒度均一,单分散性好,在300 K下具有超顺磁性,饱和磁化强度为45 A·m2/kg。 红外结果表明,-COO-共价结合在粒子表面。 zeta电势为-25 mV。 其在水中的稳定性与以三甘醇为反应介质、高温分解法制备的纳米Fe3O4粒子作比较,表现出长时间(60 d以上)的良好分散性。 静电作用及空间位阻效应是其高稳定分散性的原因。  相似文献   

6.
Fe3O4纳米棒和Fe2O3纳米线的热氧化制备与表征   总被引:1,自引:0,他引:1  
以铁单质和草酸溶液为原料,将0.75mol/L的草酸溶液滴在铁片上,于空气中200-600℃范围内加热1h,制备了Fe3O4纳米棒和Fe2O3纳米线,用扫描电镜(SEM)、X射线衍射仪(XRD)和透射电子显微镜(TEM)对产物进行表征,并研究了反应温度对产物形貌的影响.结果表明,在200-500℃下空气中反应1h在铁片上直接生长出矩形截面的多晶的立方相Fe3O4纳米棒,其直径范围约为0.5-0.8μm.当反应温度为600℃,得到的产物为六方相的Fe2O3纳米线.研究表明,C2H2O4对纳米棒的形成起关键作用,并提出了可能生长机理.  相似文献   

7.
报道了一种低温(60℃~100℃)溶剂控制合成立方相Fe3O4及正交相FeOOH等纳米材料的简易方法,即采用氯化亚铁为铁源,六亚甲基四胺为弱碱源,借助回流装置,通过改变反应温度、溶剂(分别以水、水与乙醇、水与乙二醇为溶剂)、时间等实验条件,合成出正交相的FeOOH、正交相FeOOH与立方相Fe3O4的混合物以及立方相Fe3O4磁性纳米粒子.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、物性磁测量系统以及穆斯堡尔光谱仪对产物进行了表征和分析.结果显示,所制备的混合相磁性纳米粒子为片状和棒状,而立方相的的Fe3O4磁性纳米粒子呈颗粒状.磁测量表明立方相的Fe3O4比混合相磁性纳米粒子有更大的磁饱和强度,对立方相的Fe3O4纳米粒子进行穆斯堡尔谱分析可以明确判断所合成的样品是Fe3O4,而不是γ-Fe2O3.此外,通过对实验过程、现象及表征结果等的分析;对不同条件下Fe3O4磁性纳米粒子的形成机理做了初步探讨.  相似文献   

8.
以金属铁板为电极材料,采用去离子水为液相介质,在电化学腐蚀过程中得到了均一的FeOOH纳米片.通过调节反应时间等条件,在阳极板上得到了由均一的Fe3O4纳米粒子构成的立方晶体粒子膜.在继续增加反应时间的条件下,制备出由长约10μm,宽度约400砌的FeOOH纳米棒组成的微米级绒球,并利用X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)对产物的组成和形貌进行了表征.  相似文献   

9.
纳米α-Fe2O3以其优良的生物相容性、环境友好性、稳定性、催化性、以及磁性被广泛的应用于生物医学、颜料、催化、传感以及半导体等领域.为了实现不同形貌纳米α-Fe2O3的工业化可控合成,我们采用一步水热法,通过控制体系的反应时间,依次制备出了纺锤体状、管状和轮胎状的α-Fe2O3纳米结构,并利用X射线衍射仪、扫描电子显微镜和透射电子显微镜对产物进行了表征.体系中磷酸根离子在α-Fe2O3晶面上的特异性吸附是主导α-Fe2O3形貌演进的关键性因素.其作用主要体现在两个方面:一是使α-Fe2O3颗粒产生各向异性生长,形成纳米纺锤体;二是阻止某些晶面参与质子轰击反应,形成α-Fe2O3纳米管,进而促进体系中Fe4(PO4)3(OH)3相的形成与α-Fe2O3相的再结晶,最终形成轮胎状纳米结构.通过超导量子干涉仪对产物的磁性能表征,发现产物的不同形貌以及形状各项异性会对矫顽力、磁化强度以及低温磁性相变温度等磁学参量产生显著的影响.  相似文献   

10.
以乙酰丙酮盐为前驱体,三乙二醇为溶剂,采用多元醇法制备了纳米Ni0.5-xCoxZn0.5Fe2O4(x=0,0.1,0.2,0.3和0.4)铁氧体.通过X射线衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱仪(FTIR)和振动样品磁强计(VSM)等对样品的结构、形貌和磁性能进行了表征.结果表明,所得纳米Ni0.5-xCoxZn0.5Fe2O4铁氧体的分散性较好,尺寸均一.在室温下产物的剩磁和矫顽力均较小,表现出亚铁磁性.纳米Ni0.3Co0.2Zn0.5Fe2O4铁氧体的饱和磁化强度达到41.34 A·m2·kg-1,其在交变磁场中升温可达到55℃,表现出较好的磁热性能.  相似文献   

11.
Highly crystalline and monodisperse In2O3 nanoparticles were successfully prepared by thermal decomposition of In(dipy)3Cl3·2H2O in oleylamine and oleic acid under inert atmosphere. The size of In2O3 nanoparticles could be readily tuned from 10–15 nm to 40–50 nm, depending on the molar ratio of precursor to combined solvent in the reaction system. As‐synthesized In2O3 nanoparticles have a center‐body cubic structure as characterized by powder X‐ray diffraction and selected‐area electron diffraction. Transmission electron microscopy images showed that In2O3 nanoparticles have a narrow size distribution. A relatively strongly PL peak centered at 378 nm could be clearly seen when 10–15 nm In2O3 nanoparticles redispersed in cyclohexane were excited at 275 nm at room temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This study describes the preparation of a nanocomposites fabricated from monodispersed 4‐nm iron oxide (Fe3O4) coated on the surface of carboxylic acid containing multi‐walled carbon nanotube (c‐MWCNT) and polypyrrole (PPy) by in situ chemical oxidative polymerization. High‐resolution transmission electron microscopy images and X‐ray diffraction (XRD) data indicate that the resulting Fe3O4 nanoparticles synthesized using the thermal decomposition are close to spherical dots with a particle size about 4 ± 0.2 nm. The resulting nanoparticles were further mixed with c‐MWCNT in an aqueous solution containing with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form one‐dimensional Fe3O4 coated c‐MWCNT template for further preparation of nanocomposite. Structural and morphological analysis using field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, and XRD showed that the fabricated Fe3O4 coated c‐MWCNT/PPy nanocomposites are one‐dimensional core (Fe3O4 coated c‐MWCNT)‐shell (PPy) structures. The conductivities of these Fe3O4 coated c‐MWCNT/PPy nanocomposites are about four times higher than those of pure PPy matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 727–733, 2008  相似文献   

13.
Fe3O4 nanoparticles (NPs) were prepared by the co‐precipitation of Fe3+ and Fe2+ with ammonium hydroxide, and were modified by four different surfactants. The modified Fe3O4 NPs were characterized by Fourier transform infrared spectroscopy, X‐ray powder diffraction, transmission electron microscopy and vibrating sample magnetometer. Then, the modified Fe3O4 NPs were dispersed in ethiodized‐oil by mechanical agitation and ultrasonic vibration to obtain stable Fe3O4/ethiodized‐oil magnetic fluids (MFs). The magnetic properties and rheological properties of the MFs were measured using a Gouy magnetic balance and a rotational rheometer, respectively. The saturation magnetization of the Fe3O4 modified by oleic acid was 52.1 emu/g. Furthermore, the result showed that the inductive heating effect of oleic acid stabilized Fe3O4/ethiodized‐oil MF was remarkable and it only took 650 s for the temperature rising from 25°C to 65°C. The specific absorption rate of the MF was 50.16 W/(g of Fe). It had a potential application in arterial embolization hyperthermia.  相似文献   

14.
A novel technique of fabricating magnetic thermoplastic nanofibers by the control of the phase separation of immiscible polymer blends during melt extrusion was presented. The magnetic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE)/Fe3O4 composite nanofibers were prepared via the melt extrusion of cellulose acetate butyrate matrix and PVA‐co‐PE preloaded with different amounts of Fe3O4 nanoparticles. The morphologies of magnetic composite nanofibers were characterized by scanning electron microscopy. The uniform dispersion of Fe3O4 nanoparticles in nanofiber matrixes and crystal structures were confirmed using transmission electron microscopy and wide angle X‐ray diffraction. Thermogravimetric analysis was employed to quantify the exact loading amount of Fe3O4 nanoparticles in the composite nanofibers. The magnetic measurements showed that composite nanofibers displayed superparamagnetic behavior at room temperature. With increasing content of Fe3O4 nanoparticles, the saturation magnetization of the magnetic composite nanofiber significantly improved. The prepared magnetic composite nanofibers might have found potential applications in the sensors and bio‐molecular separation fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Carboxylic acid capped γ‐Fe2O3 nanoparticles were prepared by the standard decomposition of Fe(CO)5 in di‐n‐octyl ether and oleic acid. Two methods were employed to introduce surface functionality to the nanoparticles. First, a thermally stable, tert‐butyldiphenylsilyl‐protected hydroxyl group was incorporated into the carboxylic acid surfactant used during the synthesis. Subsequent deprotection and transformation installed a 2‐bromopropionyl ester group on the particle surface (the functional‐group‐interchange method). The resulting nanoparticles were 4.53 nm in average diameter and were characterized with IR spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction, and elemental analysis. Second, a 2‐bromopropionyl ester group was installed on the particle surface after synthesis via the exchange of the surface oleic acid with a carboxylic acid containing the desired 2‐bromopropionyl ester unit (the ligand‐exchange method). The resulting nanoparticles were 4.30 nm in average diameter and were characterized with IR spectroscopy, TEM, and elemental analysis. Monitoring the percentage of bromine incorporated into the nanoparticle sample versus the ligand‐exchange reaction time indicated that the number of initiator‐containing carboxylic acids that could be exchanged onto the surface was limited, presumably by the steric size of the 2‐bromopropionyl ester group. Styrene was then polymerized directly off γ‐Fe2O3 nanoparticles, and this yielded hybrid core–shell structures. The measurements of the magnetic properties of the samples demonstrated that the magnetism of the core γ‐Fe2O3 nanoparticle did not change during the performance of the chemical transformations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3675–3688, 2005  相似文献   

16.
Magnetic poly(N‐propargylacrylamide) (PPRAAm) microspheres were prepared by the precipitation polymerization of N‐propargylacrylamide (PRAAm) in a toluene/propan‐2‐ol medium in the presence of magnetic nanoparticles (oleic acid‐coated Fe3O4). The effects of several polymerization parameters, including the polarity of the medium, polymerization temperature, the concentration of monomer, and the amount of magnetite (Fe3O4) in the polymerization feed, were examined. The microspheres were characterized in terms of their morphology, size, particle‐size distribution, and iron content using transmission and scanning electron microscopies (TEM and SEM) and atomic absorption spectroscopy (AAS). A medium polarity was identified in which magnetic particles with a narrow size distribution were formed. As expected, oleic acid‐coated Fe3O4 nanoparticles contributed to the stabilization of the polymerized magnetic microspheres. Alkyne groups in magnetic PPRAAm microspheres were detected by infrared spectroscopy. Magnetic PPRAAm microspheres were successfully used as the anchor to enable a “click” reaction with an azido‐end‐functionalized model peptide (radiolabeled azidopentanoyl‐GGGRGDSGGGY(125I)‐NH2) and 4‐azidophenylalanine using a Cu(I)‐catalyzed 1,3‐dipolar azide‐alkyne cycloaddition reaction in water. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

17.
This study describes the preparation of nanocomposites fabricated from monodispersed iron oxide (Fe3O4) and polypyrrole (PPy) by in situ chemical oxidative polymerization. The monodispersed 4 nm Fe3O4 nanoparticles which served as cores were synthesized using the thermal decomposition of a mixture of Iron (III) acetylacetonate and oleic acid in the presence of high boiling point solvents. The resulting nanoparticles were further dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/Fe3O4 spherical templates that avoid the aggregation of Fe3O4 nanoparticles during the further preparation of the nanocomposites. The Fe3O4/PPy nanocomposites were then synthesized via in situ chemical oxidative polymerization on the surface of the spherical templates. Both field‐emission scanning electron microscopy (FESEM) and high‐resolution transmission electron microscopy (HRTEM) images indicate that the resulting Fe3O4 nanoparticles are close to spherical dots with a particle size of about 4 nm and a standard deviation of less than 5% (4 ± 0.2 nm). Structural and morphological analysis using FESEM and HRTEM showed that the fabricated Fe3O4/PPy nanocomposites are core (Fe3O4)‐shell (PPy) structures. Morphology of the nanocomposites shows a remarkable change from spherical to tube‐like structures as the content of monodispersed Fe3O4 nanoparticles increases from 9% up to 24 wt %. The conductivities of these Fe3O4/PPy nanocomposites are about six times higher than those of PPy without Fe3O4. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4647–4655, 2007  相似文献   

18.
以1-十八烯作为高沸点溶剂, 在磁性粒子表面沉积量子点获得新型的磁性荧光Fe3O4-CdSe 纳米异质结构. 首先以乙酰丙酮铁(Fe(acac)3)为前驱体, 二苯醚为溶剂, 油酸为表面活性剂和油胺(OAm)为表面活性剂兼还原剂, 通过溶剂热法制备单分散性的Fe3O4 纳米粒子. 然后以1-十八烯为高沸点溶剂, CdO 为镉源,TOP-Se为硒源, 十六胺为表面活性剂以及硬脂酸为生长促进剂和成核剂制备得到新型的Fe3O4-CdSe纳米异质结构. 通过透射电镜(TEM), 傅里叶变换红外(FTIR)光谱, X射线衍射(XRD)谱, X射线光电子能谱(XPS)分析仪, 振动样品磁强计(VSM), 紫外-可见(UV-Vis)光谱和光致发光(PL)等手段对Fe3O4-CdSe 纳米复合材料的结构和性能进行表征. 结果表明, CdSe纳米粒子成功地吸附在Fe3O4纳米粒子表面, 并沿着c轴生长, 形成了宽3.6 nm, 长分别为14.5 和32.5 nm的新型枣核状和钉子状的异质结构体. 这种新型的Fe3O4-CdSe纳米复合材料是由磁铁矿Fe3O4和六方形的CdSe棒状结构组成, 具有较好的荧光性能和超顺磁性. 随着CdSe棒长度的增加, 荧光吸收峰向长波方向移动. Fe3O4纳米粒子, 枣核状和钉子状的Fe3O4-CdSe纳米复合材料的饱和磁化强度分别是57.80, 40.76和31.10 emu·g-1.  相似文献   

19.
The Fe3O4 nanoparticles and Fe3O4 nanoparticles coated with oleic acid have been dispersed in base fluid of poly(ethylene glycol) (PEG). Stability and particle size distribution of these nanofluids have been studied by result analysis of UV–Vis spectroscopy, zeta potential and dynamic light scattering. Blue shift of UV–Vis spectra has been related to quantum effects such as band gap enlargement with particle size decreasing and also to effect of oleic acid on the ultraviolet wavelength. Flow behavior and suspension structure of Fe3O4 nanoparticles dispersed in PEG have been determined by rheological properties. Viscosity values of Fe3O4-PEG nanofluid as a function of temperature have also been investigated. The chain-like structure of Fe3O4 nanoparticles coated with oleic acid in base fluid of PEG has been verified by measuring the magnetorheological properties. The effect of temperature on magnetorheological properties of Fe3O4 nanoparticles coated with oleic acid has also been investigated in base fluid of PEG. The volumetric properties of Fe3O4-PEG and Fe3O4 coated with oleic acid–PEG nanofluids and PEG–oleic acid solution have also been measured at different temperatures to specify the suspension structure and also interactions of Fe3O4, PEG and oleic acid molecules.  相似文献   

20.
以FeCl3·6H2O作为单一铁源,1,6-己二胺作为胺化试剂,利用无模板的溶剂热方法制备了胺基功能化的磁性Fe3O4纳米粒子,并利用其键合叶酸分子,制备出表面修饰了叶酸的磁性Fe3O4复合纳米粒子。利用傅里叶变换红外光谱仪、X-射线衍射仪、透射电镜、差热-热重分析仪和振动样品磁强计对所得纳米粒子的形貌、粒径、化学组成和磁性能进行了表征。结果表明,叶酸分子通过化学键牢固键合在磁性纳米Fe3O4粒子表面,叶酸修饰的复合纳米粒子仍然具有良好的磁性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号