首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-level homogenization approach is developed for the micromechanical modeling of the elastoplastic behavior of polycrystals containing intracrystalline non-shearable particles. First, a micro-meso transition is employed to establish a constitutive relation for a single crystal containing particles. The behavior of an equivalent single crystal with particles is derived from the classical formulation of plasticity of the single crystal based on the Schmid's law and crystallographic gliding. Then, the transition to the macroscopic scale is performed with a self-consistent scheme to determine the elastoplastic behavior of the macro homogeneous material. The obtained global behavior is characterized by a mixed anisotropic and kinematic hardening related to an evolution of inter- and intra-granular material microstructure. Results have been analyzed in light of second and third order internal stresses developed during the plastic flow. Especially, yield surfaces have been determined for various preloadings and particle volume fractions.  相似文献   

2.
An analytical representation of the yield loci of single crystals obeying the Schmid law is examined. It involves an exponent n. The study is conducted first in the fcc case, but it can be extended to more complex modes of slip. A method of predicting the plastic behaviour of polycrystals from the knowledge of their texture is then derived. It leads to completely analytical formulae and is compatible with the assumption of uniform stress. In case n = 2, it is equivalent to Hill's 1948 yield criterion but experiments show that the values of the best-fitting n are higher than 2. These larger values account for phenomena which cannot be predicted by the quadratic criterion, such as ‘anomalous behaviour’. Further reflection leads us to propose an alternative method of averaging, characterized by the introduction of a second exponent m. The effect of m is to realize a fair balance between the contributions of the various crystallographic components to the global mechanical behaviour. The comparison with experimental data from two aluminium sheets shows that it leads to an improvement in the predictions of the values of the strain rate ratio.  相似文献   

3.
A new latent hardening model for body-centered-cubic (bcc) single crystals motivated by the inapplicability of the Schmid law (Critical Resolved Shear Stress Criterion) is presented. This model is based on the asymmetry of shearing resistance of the {112} slip planes depending on the shearing direction in the sense of ‘twin’ and ‘anti-twin’. For the interpretation of deformation of polycrystalline aggregates depending upon initial texture, a constitutive law for bcc single crystals is developed. This law is based on a rigorous constitutive theory for crystallographic slip that accounts for the effects of strain hardening, rate-sensitivity and thermal softening. The deformation response of textured polycrystal is investigated by means of a Taylor type averaging scheme and an established numerical procedure. Results for textured tungsten polycrystals at low and high strain rates for two different textures [001] and [011] are presented and compared with experimental results. The predictions compare well with experimental observations for the [001] texture. In the [011] texture, due to the reduced symmetry of deformation, lateral tensile stresses develop even under uniaxial compression. These lateral tensile stresses are responsible for observed lack of ductility and transgranular failure in the [011] texture.  相似文献   

4.
The present study is devoted to the development and validation of a nonlinear homogenization approach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modeled as an heterogeneous composite composed of an elastoplastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the incremental method proposed by Hill [Hill, R., 1965. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101]. The approach consists in formulating the macroscopic tangent operator of the material by considering the nonlinear local behavior of each phase. Due to the matrix/inclusion morphology of the microstructure of the argillite, a Mori–Tanaka scheme is considered for the localization step. The developed model is first compared to Finite Element calculations and then validated and applied for the prediction of the macroscopic stress–strain responses of argillites.  相似文献   

5.
Summary A general approach to the problem of determination of elastoplastic behavior of metallic polycrystals at finite deformation is presented. The relation between moving dislocation density and global slip rate for grains is developed. Transition to grain response is obtained by introducing the hardening matrix. Field equations for heterogeneous elastoplastic metals are transformed into an integral equation, using Green functions technique. This allows to find the spin of the lattice related to texture formation.Scale transition is achieved by a self-consistent approximation of the integral equation. New results concerning BCC metals (sheet steel) are presented. They apply to tensile test, Lankford coefficient, initial and subsequent yield surfaces, and evolution of the internal state of the polycrystal: second-order residual stress, stored energy and texture evolution.  相似文献   

6.
An analytical micro-macro model of evolving plastic anisotropy is presented that is suitable for numerical simulation of forming processes. The model is based on the combination of a polycrystal model and different analytical procedures for writing anisotropic plastic potentials, expressing their coefficients in terms of texture coefficients, and updating the texture coefficients as function of the (tensorial) strain increment. The use of a fourth-order dual plastic potential (“C4”) in the analytical micro-macro model is studied, and this use is compared with that of Hill's [1948] yield criterion and also with the usual run of the Taylor model. The coefficients of the C4 potential depend linearly on the texture coefficients, which are updated using a variational polycrystal model. The analytical operation of this updating lies on the method first proposed by Eslinget al. [1984] and is described and checked in some detail. The predictions of the analytical micro-model compare well with measurements of the Lankford coefficient, provided the C4 potential is used. The predicted texture evolution is also in a good experimental agreement: a better one than with the Taylor model, which in some cases, gives a poor updating. The theoretical stress evolution during biaxial or plane-strain tension is experimentally consistent too, although in that case the C4 potential, closer to Taylor's model, makes no improvement as compared with Hill's quadratic criterion.  相似文献   

7.
Experimental studies of the plasticity mechanisms of polycrystals are usually based on the Schmid factor distribution supposing crystalline elasticity isotropy. A numerical evaluation of the effect of crystalline elasticity anisotropy on the apparent Schmid factor distribution at the free surface of polycrystals is presented. Cubic elasticity is considered. Order II stresses (averaged on all grains with the same crystallographic orientation) as well as variations between averages computed on grains with the same crystallographic orientation but with different neighbour grains are computed. The Finite Element Method is used. Commonly studied metals presenting an increasing anisotropy degree are considered (aluminium, nickel, austenite, copper). Concerning order II stresses in strongly anisotropic metals, the apparent Schmid factor distribution is drifted towards small Schmid factor values (the maximum Schmid factor is equal to 0.43 instead of 0.5) and the slip activation order between characteristic orientations of the crystallographic standard triangle is modified. The computed square deviations of the stresses averaged on grains with the same crystallographic orientation but with different neighbour grains are a bit higher than the second order ones (inter-orientation scatter). Our numerical evaluations agree quantitatively with several observations and measures of the literature concerning stress and strain distribution in copper and austenite polycrystals submitted to low amplitude loadings. Hopefully, the given apparent Schmid factor distributions could help to better understand the observations of the plasticity mechanisms taking place at the free surface of polycrystals. To cite this article: M. Sauzay, C. R. Mecanique 334 (2006).  相似文献   

8.
This paper deals with the simulation of the mechanical response and texture evolution of cubic crystals and polycrystals for a rate-independent elastic–plastic constitutive law. No viscous effects are considered. An algorithm is introduced to treat the difficult case of multi-surface plasticity. This algorithm allows the computation of the mechanical response of a single crystal. The corresponding yield surface is made of the intersection of several hyper-planes in the stress space. The problem of the multiplicity of the slip systems is solved thanks to a pseudo-inversion method. Self and latent hardening are taken into account. In order to compute the response of a polycrystal, a Taylor homogenization scheme is used. The stress–strain response of single crystals and polycrystals is computed for various loading cases. The texture evolution predicted for compression, plane strain compression and simple shear are compared with the results given by a visco-plastic polycrystalline model.  相似文献   

9.
Twinning has been incorporated into a crystal plasticity model with the regularized Schmid law. In order to account for the appearance of twin-related orientations, a new probabilistic twin reorientation scheme that maintains the number of reoriented grains consistent with the accumulated deformation by twinning within the polycrystalline element, has been developed. A hardening rule describing slip–twin interactions has been also proposed. Model predictions concerning material response and texture evolution have been analyzed for fcc materials of low stacking fault energy.  相似文献   

10.
Based on a nonclassical hardening law and the Hill’s self-consistent scheme, a new approach is proposed for the analysis of polycrystal nonproportional cyclic plasticity. A novel parameter related to the plastic dissipation on each slip system is proposed and embedded in the Bassani’s definition of cross-hardening. The tangential elastoplastic tensor relating the increments of stress and strain in a single crystal is derived and the corresponding numerical algorithm for polycrystal plasticity is developed. The elastoplastic response of 316 stainless steel subjected to typical biaxial nonproportional strain cycling is analyzed, and the main features are well replicated. The validity of the proposed approach is demonstrated by the satisfactory agreement between the computed results and experimental observation.  相似文献   

11.
We propose a model which links macroscopic deformations with changes in crystalline texture. The model calls upon microstructural variables to describe the state of the polycrystal; their time-rates, together with the corresponding microstresses, enter the expression of virtual power. Appropriate supplementary terms also appear in the equations of balance of energy and entropy.Schmid's law for single slip systems is invoked to provide one of the additional constitutive equations. A constitutive statement similar to the Taylor-Bishop-Hill criterion for polycrystals is introduced to relate the velocity gradient and the lattice spin via the active spin combination.The model is applied to an example agreeing with a Taylor planar polycrystal for a particular choice of constitutive laws for the microstresses.
Sommario Proponiamo un modello che collega la deformazione macroscopica all'evoluzione della tessitura cristallina. Questo modello si rifà a variabili microstrutturali per descriverelo stato profondo del policristallo; le velocità di tali variabili entrano nell'espressione della potenza virtuale in uno con le microtensioni ad esse associate. Termini supplementari appropriati appaiono inoltre nelle equazioni di bilancio dell'energia e dell'entropia.Viene utilizzato il criterio di Schmid per i singoli sistemi di scivolamento per scrivere una delle equazioni costitutive necessarie. Viene quindi introdotto un assunto simile al criterio di Taylor-Bishop-Hill per i policristalli per mettere in relazione il gradiente di velocità e la velocità di rotazione del reticolo cristallino via la combinazione di scivolamenti attiva.Il modello viene applicato ad un esempio mostrando buon accordo con un policristallo piano alla Taylor per una scelta particolare dei legami costitutivi delle microtensioni.
  相似文献   

12.
A dislocation density based constitutive model for the face centered cubic crystal structure has been implemented into a crystal-plasticity finite element framework and extended to consider the mechanical interaction between mobile dislocations and grain boundaries by the authors [Ma, A., Roters, F., Raabe, D., 2006a. A dislocation density based constitutive model for crystal-plasticity FEM including geometrically necessary dislocations. Acta Materialia 54, 2169–2179; Ma, A., Roters, F., Raabe, D., 2006b. On the consideration of interactions between dislocations and grain boundaries in crystal-plasticity finite element modeling – theory, experiments, and simulations. Acta Materialia 54, 2181–2194]. The approach to model the grain boundary resistance against slip is based on the introduction of an additional activation energy into the rate equation for mobile dislocations in the vicinity of internal interfaces. This energy barrier is derived from the assumption of thermally activated dislocation penetration events through grain boundaries. The model takes full account of the geometry of the grain boundaries and of the Schmid factors of the critically stressed incoming and outgoing slip systems. In this study we focus on the influence of the one remaining model parameter which can be used to scale the obstacle strength of the grain boundary.  相似文献   

13.
The aim of this paper is to give a Lyapunov stability analysis of a parametrically excited impact oscillator, i.e. a vertically driven pendulum which can collide with a support. The impact oscillator with parametric excitation is described by Hill's equation with a unilateral constraint. The unilaterally constrained Hill's equation is an archetype of a parametrically excited non-smooth dynamical system with state jumps. The exact stability criteria of the unilaterally constrained Hill's equation are rigorously derived using Lyapunov techniques and are expressed in the properties of the fundamental solutions of the unconstrained Hill's equation. Furthermore, an asymptotic approximation method for the critical restitution coefficient is presented based on Hill's infinite determinant and this approximation can be made arbitrarily accurate. A comparison of numerical and theoretical results is presented for the unilaterally constrained Mathieu equation.  相似文献   

14.
本文建立基于微裂纹扩展的岩石弹塑性损伤微观力学模型。用自洽方法考虑裂隙间相互影响,压缩载荷下微裂纹尖端翼裂纹稳定扩展表征岩石的微观损伤,基于应变能密度准则用Newton迭代法求复合型断裂的翼裂纹扩展长度,并采用微裂隙统计的二参数Weibull函数模型反映绝对体积应变对微裂纹分布数目影响,进而用翼裂纹扩展所表征的应力释放体积和微裂纹数目来表示含有微裂隙的岩石损伤演化变量;宏观塑性屈服函数采用Voyiadjis等的等效塑性应变的硬化函数,反映塑性内变量对硬化函数的影响;建立岩石的弹塑性损伤本构关系及其数值算法,并用回映隐式积分算法编制了弹塑性损伤模型的程序。从围压和微裂隙长度等因素分析弹塑性损伤模型的岩石的损伤和宏观塑性特性。  相似文献   

15.
This paper is concerned with an analysis of strain localization in ductile crystals deforming by single slip. The plastic flow is modelled as rate-insensitive, and localization, viewed as a bifurcation from a homogeneous deformation mode to one which is concentrated in a narrow ‘shear band’, is found to be possible only when the plastic hardening modulus for the slip system has fallen to a certain critical value hcr, sensitive to the precise form of the constitutive law governing incremental shear. We develop the general form of this constitutive law, incorporating within it the possibility of deviations from the Schmid rule of a critical resolved shear stress, and we show that hcr may in fact be positive when there are deviations from the Schmid rule. It is suggested that micromechanical processes such as ‘cross-slip’ in crystals provide specific cases for which stresses other than the Schmid stress may influence plastic response and, further, there is an experimental association of localization with the onset of large amounts of cross-slip. Thus, we give the specific form of hcr for a constitutive model that corresponds to non-Schmid effects in cross-slip, and we develop a dislocation model of the process from which we estimate the magnitude of the parameters involved. The work supports the notion that localization can occur with positive strain-hardening, hcr > 0, and the often invoked notions of the attainment of an ideally-plastic or strain-softening state for localization may be unnecessary.  相似文献   

16.
17.
Initiation and development of shear band (SB) in f.c.c. strain hardening polycrystals during rolling are modelled in terms of crystallographic texture. The constitutive law of the material is expressed in terms of the texture-dependent normalized yield surface and the critical shear stress which evolves with strain. The normalized yield surface is predicted by the Taylor model as a function of rolling texture. It is shown that a rounded vertex (RV) develops at the loading point as the rolling texture becomes more and more marked. A detailed characterization of the RV is carried out. It is found that the normalized curvature radius of the RV decreases from unity towards zero at very large strain. This allows for a small stress perturbation to induce a shear strain perturbation with a large orientation deviation of deformation. By linearized stability analysis, the condition for initiation of SB from the shear strain perturbation is obtained. Development of SB is analysed by solving the established governing equations of shear banding. It is shown that the conditions for SB initiation and saturation of shear localisation depend strongly on the texture. Based on this model problem, a long discussion is carried out which allows a better understanding of the basic physical origin and saturation of SB in strain-hardening polycrystals, as well as the effects of yield surface curvature and yield surface rotation whose general form is derived.  相似文献   

18.
The “second-order” homogenization procedure (J. Mech. Phys. Solids 50 (2002) 737) is used to compute estimates of the self-consistent type for the effective response of cubic and hexagonal viscoplastic polycrystals with isotropic textures. The method, which requires the computation of the averages of the stress field and the covariances of its fluctuations over the various grain orientations in an optimally selected “linear comparison polycrystal,” is also used to generate information on the heterogeneity of the stress and strain-rate fields within the polycrystals. In contrast with earlier estimates of the self-consistent type, such as those arising from the “incremental” and “tangent” schemes, the new estimates for the effective behavior are found to satisfy all known bounds, even in the strongly nonlinear, rate-insensitive limit. In addition, they are found to satisfy a recently proposed scaling law at large grain anisotropy. The fluctuations of the stresses and strain rates, which are nonzero for all grain orientations, are found to generally increase with decreasing strain-rate sensitivity (i.e., increasing nonlinearity) and with increasing grain anisotropy (which is typically higher for lower-symmetry systems).  相似文献   

19.
The effect of grain-size on the elastoplastic behavior of metals is investigated from the micromechanics standpoint. First, based on the observations that dislocation pile-ups, formation of cell structures, and other inelastic activities influenced by the presence of grain boundary actually take place transcrystallinely, a grain-size dependent constitutive equation is proposed for the slip deformation of slip systems. By means of a modified Hill's self-consistent relation the local stress of a grain is calculated, and used in conjunction with this constitutive equation to evaluate the plastic strain of each constituent grain. The grain-size effect on the plastic flow of polycrystals then can be determined by an averaging process. To check the validity of the proposed theory it was finally applied to predict the stress-strain curves and flow stresses of a copper at various grain-sizes. The obtained results were found to be in good agreement with experimental data.  相似文献   

20.
基于非经典塑性理论和连续介质损伤力学,利用在一个特殊坐标系下基于椭球形孔洞模型得到的可考虑孔洞形状变化混合强化材料的损伤演化率得到了铁素体相的损伤本构方程,通过混合物理论利用铁素体和渗碳体相各自本构关系并考虑其几何特征得到了珠光体团的损伤本构模型。进而采用Hill自洽方法,得到了珠光体材料的宏观损伤本构描述,发展了相应的数值方法与程序。讨论了孔洞形状对材料损伤的影响,并对典型珠光体双相材料BS11在非对称循环加载史下的弹塑性响应特性进行了分析,得到了与实验较为一致的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号