首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Acrylonitrile-butadiene-styrene (ABS)/polyamide 6 (PA6) blends containing various amounts of organomontmorillonite (OMMT) were prepared using a twin-screw extruder followed by injection molding. The effect of OMMT on the microstructure and properties of the ternary nanocomposites is investigated by wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and mechanical properties testing. The results showed the OMMT platelets were preferentially located and exfoliated in the PA6 phase, but some were located at the interface of the ABS and PA6 phase. The effect of the addition of the OMMT on the morphology and mechanical properties was also evaluated. SEM revealed that the dimensions of the dispersed PA6 droplets were greatly reduced when the concentration of the OMMT was less than 4 phr. The domain size was less than the neat ABS/PA6 blends with the increasing of the OMMT content. It was suggested that the OMMT can compatibilize the ABS/PA6 blend. In addition, the flexural strength and modulus increased with increasing OMMT content, but the tensile strength became maximal at 3 phr OMMT. The OMMT had a negligible effect on the impact strength of the ABS/PA6 blend nanocomposite.  相似文献   

2.
A series of binary and ternary blends composed of polylactic acid (PLA), low-density polyethylene (LDPE), and chitosan (CS) were prepared and characterized in terms of their morphological and mechanical properties. The mechanical properties of the prepared blends, including tensile properties and impact strength, were compared with neat PLA. In addition, the effect of incorporation of maleic anhydride-grafted linear low-density polyethylene (LLDPE-g-MA) as a compatibilizing agent, and the order of mixing on the mechanical and morphological properties of the ternary blends were also studied. It was observed that addition of CS enhanced the stiffness of PLA/LDPE blends while it decreased the toughness and tensile strength. It was demonstrated that addition of LLDPE-g-MA, up to 10 wt%, had no significant compatibilizing effect. However, the mechanical results indicated that when 15 wt% of LLDPE-g-MA was loaded, it started to play a compatibilizing role and caused an improvement in the toughness properties of ternary blend.  相似文献   

3.
Fully biodegradable poly(L-lactide) and poly(ethylene succinate) (PLLA/PES) blends were prepared via melt-blending using PLLA and PES as reactants in a stainless steel chamber. The prepared PLLA/PES blend, as well as neat PLLA and PES, was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD) to confirm the structure and the crystallization of PLLA in the blend. The mechanical properties of PLLA/PES blends were determined by bending and tensile tests and the effects of PES content on the mechanical properties of PLLA/PES blends were investigated. It was found that blending some amount of PES could significantly improve the elongation at break while still keeping considerably high strength and modulus. With increasing PES content, both strength and modulus gradually decreased; however the elongation at break significantly increased. SEM was used to examine the morphology of fracture surfaces of PLLA/PES blends.  相似文献   

4.
Polypropylene (PP) blends based on isotactic polypropylene (iPP), propylene-ethylene block copolymer (bPP), and propylene–ethylene random copolymer (rPP) were prepared by melt blending and the effects of content of bPP and rPP on the shrinkage during solidification and storage and mechanical properties of the blends were studied. It was found that the addition of polypropylene copolymer could effectively reduce the processing shrinkage of iPP and the lowest shrinkage of the blends was achieved at a loading of 2 wt% bPP or rPP. The flexural modulus and tensile strength of the blends decreased a little while the impact strength and elongation at break were improved greatly compared with those of iPP.  相似文献   

5.
The tensile, dynamic mechanical and morphological properties of PC/HDPE, PC/LDPE and PC/PS blends have been investigated with the intent of clarifying the major factors governing the modulus of these essentially incompatible blends. Scanning electron microscopy shows that all of the PC/HDPE, PC/LDPE and PC/PS blends have a domain structure whose morphology is strongly dependent on the concentration of the dispersed phase; when the dispersed phase concentration is less than 15%, the domains are mostly of spherical shape, while above 20% agglomeration takes place to form rodlike structures. Dynamic mechanical data shows there is essentially no adhesion at the PC-HDPE and PC-LDPE boundaries, while there is appreciable adhesion at the PC-PS interface. The existence of an intermixed zone was postulated to explain this interfacial adhesion. Morphological and thermal analysis results also indicate that both the HDPE and LDPE inclusions are loosely sitting in the holes in the PC matrix while the PS inclusions are compactly embedded in the PC matrix. These differences in boundary nature give marked effects on the tensile properties including the modulus. For the modulus, PC/HDPE and PC/LDPE blend systems can be regarded to be mechanically equivalent to a PC matrix alone with holes in it when the dispersed phase concentration is lower than 15%, while in the case of PC/PS blends the PS inclusions contribute substantially to the sample's overall modulus.  相似文献   

6.
The degree of dynamic vulcanization, mechanical properties, rheological behavior, and the ageing-resistant performance of trans 1,4-polyisoprene (TPI)/polypropylene (PP) and ethylene propylene diene rubber (EPDM)/PP thermoplastic vulcanizates with a blend ratio of 60/40 were investigated comparatively. The results showed that TPI had fully dynamically vulcanized when mixed with PP in the Hakke mixer chamber (175°C, 60 rpm) while EPDM had only partly dynamically vulcanized due to its saturated main chain backbone. With increased sulfur content, the torque at the end of the curing curves of the two thermoplastic vulcanizates (TPVs) increased in the curing characteristics measuring process as the degree of crosslinking increased. Comparing the two blends, TPI/PP-TPVs were possessed of a better mobility, a little lower tensile strength and tear strength, a little higher 100% modulus and hardness, and much lower elongation at break. EPDM/PP-TPVs had better ageing-resistant characteristics due to EPDM's saturated main chain backbone.  相似文献   

7.
The effect of the disperse phase and the diffuse interface between phases on the tensile and impact strengths of polypropylene (PP)/poly(ethylene terephthalate) (PET) (75/20 by weight) blends compatibilized with maleic anhydride–grafted PP derivatives and on the tensile modulus of poly(vinyl chloride)/polystyrene (PVC/PS) nanoparticle blends compatibilized with polystyrene/poly(vinyl acetate) (PS/PVAc) block copolymers were investigated experimentally. The weight fraction of the diffuse interface between the PP and PET phases in the PP/PET blends was determined by modulated differential scanning calorimetry (MDSC). A correlation between the diffuse interface content and mechanical properties was found. With increasing diffuse interface weight fraction, the impact and tensile strengths of the PP/PET blends increased. There is a brittle-tough type transition in these PP/PET blends. With increasing diffuse interface content in the PVC/PS nanoparticle blends in which the particle size was fixed at about 100 nm, the tensile modulus also clearly increased.  相似文献   

8.
The modification of the compatibility between polyethylene (PE) and polypropylene (PP) by using irradiated PE wax (PE wax) is the purpose of this study. In this part, polymer blends based on various ratios of PE and PP were blended with 2.5% PE wax in all the blend ratios to determine the optimum ratio of the blend to be compatabilized. The influence of PE wax as a compatibilizing agent for PE and PP blend was investigated through the measurements of thermal, mechanical and morphological properties. The PP/PE blends modified by this method showed higher mechanical properties than those of the unmodified blends. Also, stress and strain of the modified blend having ratio (60/40) PP/PE blend recorded the maximum mechanical behavior. Scanning electron microscopy (SEM) micrographs of modified blends showed an indication of strong interfacial adhesion and a smooth continuous surface in which giving a support to the effect of irradiated PE wax as a tool for improving the compatibility.  相似文献   

9.
Various compositions of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blends were prepared in decalin, with the rheological, mechanical, thermal, and surface properties of the blends being determined using the solution cast film. Viscosity and mechanical properties of the blends decreased below the additivity value with increasing PP content implying that PP molecules disturb the entanglement of UHMWPE. Contact angle of the blend films with a water drop increased with increasing content of PP. The atomic force microscope (AFM) images showed that the surface of cast UHMWPE was very smooth whereas that of cast PP was very uneven. For blends, the surface became rough and uneven with increasing content of PP. The melting temperature of PP (T mP) decreased in the blends with increasing UHMWPE content while that of UHMWPE (T mU) remained almost constant in blends.  相似文献   

10.
The effects of addition of varying amounts of polyolefin elastomers (POE) (with and/or without grafted maleic anhydride) on the morphology and mechanical properties of polyamide-6 (PA6)-based blends were studied. Scanning electron microscopy (SEM) was employed to obtain some detailed quantitative analyses of the morphology of the fracture behavior for the blends containing 80 wt% PA6 and 20 wt% total elastomer. Impact strength, tensile strength, and flexural strength were also measured for these blends. The results showed that POE and PA6 were an incompatible system, but the POE-g-MAH was compatible and had a toughening effect on PA6. PA6-g-POE was formed through the reaction between POE-g-MAH and PA6 during the melt extrusion process, which reduced the size of the dispersed phase and improved the impact and tensile strength of the blends. The impact strength was improved by nine times compared with the pure PA6 or the binary blend PA6/POE when the blend ratio of the ternary blend PA6/POE/POE-g-MAH was 80/16/4.  相似文献   

11.
Thermoplastic elastomers (TPEs) based on natural rubber (NR)/polypropylene (PP) with different blend ratios were prepared and studied. The TPEs were obtained by dynamic vulcanization of NR/PP using a sulfur (S)/N-tert-butyl-2-benzothiazolesulphenamide (TBBS) and tetramethylthiuram disulphide (TMTD) curative system during processing in the melt state in an internal mixer equipped with cam rotors. Rheological, thermal, mechanical, dynamic, and morphological properties of the TPEs prepared were investigated. Based on this study a mechanism for the NR crosslinking was proposed where the sulfur vulcanization occurs through radical substitution in the forms of polysulfide bridges. The dynamic vulcanization process increases the stiffness of the NR phase in the TPEs and modifies the rheological and thermal behavior of the system compared to the behavior of the basic material PP. The crosslinked NR particles restrict the spherulitic growth and the regular arrangement of the spherulites of PP phase, decreasing the crystallinity degree. On the other hand, a reduction of mobility of the chain segments was also observed and, consequently, an increase of the Tg values. NR/PP TPEs with high content of NR showed superior mechanical performance compared to the uncrosslinked NR/PP blends in terms of tensile strength, Young's modulus and hardness. An increase of approximately 320% in Young's modulus values was obtained for the NR70/PP30 TPE compared to NR70/PP30. Morphological studies revealed the formation of large aggregates of NR domains in NR/PP TPEs which increased in size with an increase of the rubber content.  相似文献   

12.
Polypropylene (PP)/polyester (PES)–blend fibers were prepared by extruder melt spinning. The polymer blend consisted of PP and a “master batch” (MB) based on polytrimethylene terephthalate (PTT) or polyethylene terephthalate (PET), binary PTT/PET or PP/PTT blends, and also on a ternary PP/(PTT/PET) blend. The phase structure of PP/PES–blend fibers was examined. PES microfibers showed separation from the PP matrix in blend fibers. The impact of MB composition and rheological characteristics on phase structure parameters indicate a significant contribution of the PTT in the binary MB on the length of dispersed PES microfibers in the PP matrix. However, the blends of PP and ternary MB (PP/PTT/PET) have a lower diameter and length of the PES microfibers. The presence of PTT/PET (PES) enhances the structural and mechanical properties of the blend PP/PES fibers. In addition, PTT increases the tensile strength of the PP/PES–blend fibers if a binary MB is used, while the fiber nonuniformity is reduced in the presence of a ternary MB.  相似文献   

13.
Blends of two grades of acrylonitrile‐butadiene‐styrene (ABS) with three different compounds of poly (vinyl chloride) (PVC) were prepared via melt processing and their morphology, flammability, and physical and mechanical properties were investigated. SEM results showed that the ABS/PVC blend is a compatible system. Also, it can be inferred from fracture surface images that ABS/PVC blends are tough, even at low temperatures. It was found that properties of these blends significantly depend on blend composition and PVC compound type; however, the ABS types have only a small effect on blend properties. On blending of ABS with a soft PVC compound, impact strength, and melt flow index (MFI) increased, but tensile and flexural strength decreased. In contrast, blending of ABS with a rigid PVC compound improved fire retardancy and some mechanical properties and decreased MFI and impact strength.  相似文献   

14.
Ethylene‐α‐olefin copolymer (POE)/polystyrene (PS)/poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) blends were prepared via melt blending in a co‐rotating twin‐screw extruder. The effects of SEBS copolymer on the morphology and rheological and mechanical properties of the blends were studied. Scanning electron microscopy (SEM) photos showed that the addition of SEBS copolymer resulted in finer dispersion of PS particles in the POE matrix and better interfacial adhesion between POE and PS compared with POE/PS blends, which exhibited a very coarse morphology due to the immiscibility between them. Interestingly, the tensile strength increased from 12.5 MPa for neat POE to 23.5 MPa for the POE/PS/SEBS (60/10/30) blend, whereas the tensile strengths of POE/PS (85.7/14.3) blend and POE/SEBS (66.7/33.3) blend were only 10.5 and 16.5 MPa, respectively. This indicates that both SEBS copolymer and PS have a synergistic reinforcing effect on POE. Dynamic mechanical thermal analysis (DMTA) and dynamic rheological property measurement also revealed that there existed some interactions between POE and SEBS as well as between SEBS and PS. DMTA results also showed that the storage modulus of POE increased when PS and SEBS were incorporated, especially at high temperature, which means that the service temperature of POE was improved.  相似文献   

15.
Polylactide (PLA) composites with acrylic impact modifier BPM, i.e., PLA/BPM composites, were produced by the melt blending method. The effects of BPM on the thermal properties, melting behaviors, and dynamic mechanical properties of the PLA/BPMs were investigated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Tensile strength, flexural strength, and modulus of the injection molded specimens were measured by an Instron tensile machine. The influence of BPM on the impact strength of injection molded PLA/BPM composites was examined using an impact tester. The morphology of cryofractured surfaces and fracture surfaces of the composites after the tensile and impact testing was also investigated using scanning electron microscope. The test results show that the composites with BPM possess better flexibility when compared with neat PLA. However, the notched Izod impact strength showed improvement only when the BPM content was higher than 15 wt%.  相似文献   

16.
Polypropylene (PP)/ethylene-octene copolymer (POE) blends with 10–50wt% POE composition were prepared using a twin-screw extruder in the melt state. Mechanical properties of PP and PP/POE blends were tested and the effect of POE content on the crystalline morphology and structure, melting and crystallization behavior, compatiblilty, phase morphology, and the interface cohesiveness of the blends were investigated by polarizing optical microscope (POM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM). The relationship between mechanical properties and microstructure of the PP/POE blends is discussed. The results showed that POE had a dual function of both reinforcing and toughening PP in the range from 10–40wt%, which was attributed to the integrated functions of the degree of crystallinity of the PP phase, phase morphology, and interface cohesiveness of the blend.  相似文献   

17.
Blends of cis-polyisoprene (CPI) and chloroprene rubber (CR) have been prepared in different blend compositions by solution casting. Structural characterization of these blends has been done using X-ray diffraction and scanning electron microscopy. The experimental values of thermo-mechanical properties, mechanical properties and thermal conductivity of so-prepared blends determined using dynamic mechanical analyzer and thermal constant analyzer have been presented. Crosslink density has been determined using different models. Experimental results from thermo-mechanical properties show that all the blends are immiscible. Tensile strength, toughness, Young's modulus and thermal conductivity of these blends were found to be higher than that of pure CPI and pure CR. However, mechanical properties of 25/75(V/V) of CPI/CR blend and thermal conductivity of 75/25(V/V) of CPI/CR blend have been found to be highest.  相似文献   

18.
A range of blends based on 70 wt% of poly(trimethylene terephthalate) PTT with 30 wt% dispersed phase were produced via melt blending. The dispersed phase composition was varied from pure maleic anhydride grafted poly(ethylene-octene) (POE-g-MA) over a range of POE-g-MA:polypropylene (PP) ratios. The micromorphology and mechanical properties of the ternary blends were investigated. The results indicated that the domains of the POE-g-MA are dispersed in the PTT matrix, and at the same time the POE-g-MA encapsulate the PP domains. The interfacial reaction between the hydroxyl-end group of PTT and maleic anhydride (MA) during melt blending changes the formation from “isolated formation” to “capsule formation,” where the PP domains are encapsulated by POE-g-MA. Compared to the PTT/POE-g-MA blends, mechanical properties of ternary blends, such as tensile strength and Young's modulus, were improved significantly.  相似文献   

19.
《Composite Interfaces》2013,20(8-9):783-799
The effect of molecular structure of styrene-butadiene (SB) block copolymers on their interfacial activity in low-density polyethylene/polystyrene (LDPE/PS) (4/1) blends was studied. It was found that addition of some SB copolymers, which are localized in brittle PS particles, leads to a decrease in the blend impact strength in spite of the fact that these SB improve the toughness of both the blend components. Comparison with our previous results showed that the distribution of SB copolymers between the interface and bulk phases and their supermolecular structure in LDPE/PS (4/1) blends strongly differs from those in LDPE/PS (1/4) blends.  相似文献   

20.
The most important practical application of graphene nanoplatelets (GNPs) would be as nanofillers for polymer nanocomposites. However, the modification of GNPs is needed to improve the interfacial adhesion between GNPs and a polymer matrix. Therefore, in this study, the alkylation of GNPs by dodecylamine was carried out via chemical reactions between the amine groups of the alkyl amine and the carboxyl and epoxy groups of the oxidized GNPs’ surfaces. The dodecylation of the GNPs was confirmed by FTIR and TGA. The TGA data showed that the dodecyl-GNPs comprised alkyl groups 2.4%. Polypropylene nanocomposites with the dodecyl-GNPs were prepared in a platy shape by melt-blending followed by compression molding. The mechanical and thermal properties of the nanocomposites were measured by UTM, izod impact tester, DSC and DMA. Compared to the neat PP sample, the flexural modulus, flexural strength and impact strength of the PP nanocomposite with the dodecyl-GNPs 0.5 phr were increased by 38, 4 and 34% respectively. The fracture surfaces’ images of the nanocomposites taken by SEM showed that the dodecylation of the GNPs improved the interfacial adhesion between the GNPs and the PP matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号