首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary goal of this study is to develop a novel PEMs with unique surface structure utilizing the high viscosity of the impregnation solution. SiO2 nanofiber mats were prepared via the electrospinning method and introduced into sulfonated poly(ether sulfone) (SPES) matrix to prepare hybrid membrane. The effect of concentration of impregnation solution on the morphology and properties of the proton exchange membranes (PEMs), including thermal stability, water uptake, dimensional stability, proton conductivity, and methanol permeability were investigated. SEM results showed that a unique surface structure was prepared due to the high solution concentration. Moreover, the hydrophilic nanofibers on the surface constructed continuous proton pathways, which can enhance the proton conductivity of the membranes, a maximum proton conductivity of 0.125 S/cm was obtained when the SPES concentration was 40 wt% at 80 °C, and the conductivity was improved about 1.95 times compared to that of pure SPES membrane. The SiO2 nanofiber mat-supported hybrid membrane could be used as PEMs for fuel cell applications.  相似文献   

2.
Fuel cell represents a new energy conversion device, which promises to provide clean source of power. Fuel cell [particularly proton exchange membrane fuel cell and direct methanol fuel cell (DMFC)] is a promising candidate for transportation and portable power source applications. In DMFC, there is a problem of methanol crossover. In order to reduce such a problem, there has been an intensive research activity in the modification of Nafion. In the present investigation, self-assembled membranes were fabricated with sulfonated polyether ether ketone as the core part of the membrane. Aminated polysulfone and sulfonated polysulfone were used as the layers in order to prevent the crossover of methanol. The assembled membranes were characterized by ion exchange capacity, water and methanol absorption, and durability. The methanol permeability and selectivity ratio proved a strong influence on DMFC application. Scanning electron microscopy proved smooth surface, which established strong cohesive force for the polymer chains. Among the synthesized self-assembled membranes, the membrane with two bilayers was the best in terms of power density in DMFC. The membrane electrode assembly with two bilayers showed higher performance (~61.05 mW/cm2) than sulfonated poly(ether ether ketone) and Nafion in DMFC.  相似文献   

3.
Novel sulfonated poly (arylene ether nitrile) with pendant carboxylic group copolymers have been prepared as proton exchange membranes which were applied in direct methanol fuel cells (DMFCs). Compared with others, this work shows two main advantages: the crosslinked method is uncomplicated and the membranes were prepared via the hydroquinonesulfonic acid potassium salt (SHQ) as crosslinker mingled in sulfonated poly (arylene ether nitrile) (SPEN) to avoid the decrease of proton conductivity. The obtained crosslinked membranes exhibited improved dimensional stability; larger tensile strength than that of pure SPEN; and good thermal, mechanical properties. Furthermore, after crosslinking, the membranes had low methanol permeability values (0.78–3.4 × 10?7 cm2 s?1) and displayed good proton conductivities in the range of 0.0328–0.0385 S·cm?1 at room temperature. The sample of SPEN-SHQ-5 % showed highest selectivity value of 4.205 × 105 S·s cm?3, which was 11.9 times higher than that of Nafion 117. All of these results indicated that these membranes would be the potential candidates as proton exchange membranes (PEMs) in DMFCs.  相似文献   

4.
A polyelectrolyte complex (PEC) of chitosan and phosphotungstic acid (PWA) was prepared and characterized as a proton-conducting membrane for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy showed the presence of stable PWA in PEC. To reduce the methanol permeability, several amounts of montmorilonite (MMT) nanoclays (trade name: Cloisite Na) were introduced to the system. The X-ray diffraction patterns of nanocomposite membranes proved the nanoclay layers were exfoliated in the membranes at loading weights of MMT lower than 3 wt%. Proton conductivity and methanol permeability were measured. According to the selectivity parameter—ratio of proton conductivity to methanol permeability—PEC containing 2 wt% MMT (PEC/2 wt% MMT) was identified as the optimum composition. Finally, DMFC performance tests were investigated at 70°C and 5 M methanol feed and the optimum membrane showed higher maximum power density in comparison with Nafion 117. The results indicated the optimum nanocomposite membrane is a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   

5.
In order to reduce water uptake, swelling ratio, and methanol permeability in sulfonated proton exchange membranes (PEM), novel-sulfonated aromatic poly(ether ether nitrile)s-bearing pendant propenyl groups had been synthesized by direct copolymerization method. All the results showed that the propenyl groups were suitable cross-linkable groups, and that this method was an effective way to overcome the drawbacks of sulfonated polymers at high ion exchange capacity (IEC) values. By cross-linking, the water uptake, swelling ratio, and methanol diffusion could be restricted owing to the formation of compact network structure. For example, CSPEN-60 membranes showed the proton conductivity of 0.072 S cm?1 at 80 °C, while the swelling ratios and water uptake (17.9 and 60.7 %) were much lower than that of the SPEN-60 membrane (60.8 and 295.2 %). Meanwhile, a 1.1 × 10?7 cm2 s?1 of methanol diffusion was obtained which was much lower than that of Nafion 117 (14.1 × 10?7 cm2 s?1). Although the proton conductivity of the CSPEN-60 membranes is lower than that of the SPEN-60 membrane, the selectivity is much higher. The CSPEN-60 membrane exhibited the highest selectivity among the tested membranes, about 5.8 times higher compared with that of Nafion117.  相似文献   

6.
《Composite Interfaces》2013,20(3):237-249
A Nafion/sulfonated SiO2 molecular sieve composite membrane was prepared by solution casting with sulfonated SiO2 molecular sieve as the modifier. The ATR/FT-IR results showed that sulfonated SiO2 molecular sieve did not change the structure of the membrane. The SEM and XRD results showed that the molecular sieve was distributed uniformly in the membrane. The proton conductivity, methanol permeability, water content, and swelling degree were measured. Compared with Nafion membrane, the composite membrane had higher water content and proton conductivity and lower methanol permeability. The overall performance was the best when the content of sulfonated SiO2 molecular sieve was 5 wt%. These results indicated that Nafion/sulfonated SiO2 molecular sieve composite membranes would be excellent candidate membrane materials for direct methanol fuel cell (DMFC) applications.  相似文献   

7.
Nanocomposite polymers based on phosphonic acid functionalized carbon nanotubes (CNT-POH) and sulfonated poly(ether ether ketone) (SPEEK) have been fabricated and employed as highly efficient proton exchange membranes. CNT-POH were synthesized through the grafting of carbon nanotubes (CNT) with diethylphosphatoethyl triethoxysilane and subsequent acidification of phosphate to phosphonic acid ligands. Incorporating CNT-POH into SPEEK matrix improves the proton conductivity at different temperatures and relative humidity, which can be attributed to the homogeneous dispersion of highly hydrophilic phosphonic acid groups and the formation of proton transport channels in the membrane. The methanol permeability of the composite membranes is also decreased, owing to the increased tortuosity of the methanol transport channel. The CNT in SPEEK matrix also enhance the dimensional stability and mechanical property remarkably. Consequently, this phosphonic acid functionalized CNT/SPEEK composite membrane (SPEEK-POH) is a potential candidate for application in direct methanol fuel cells (DMFC).  相似文献   

8.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane, based on DuPont Nafion/imidazole-modified nanosilica (Im-Si), for direct methanol fuel cell applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of nanosilica, and negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of Nafion and Im-Si which result in both lower methanol permeability and also higher proton conductivity. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy, thermogravimetry analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, water uptake, methanol permeability, and ion-exchange capacity, as well as proton conductivity. The Nafion/Im-Si membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, higher selectivity parameter in comparison to the neat Nafion or Nafion/silica membranes. The obtained results indicated that the Nafion/Im-Si membranes could be utilized as promising polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

9.
A series of novel sulfonated poly(arylene ether nitrile) (SPEN) containing carboxylic acid group was successfully synthesized by direct aromatic nucleophilic substitution polycondensation of 2,6-difluorobenzonitrile (DFBN), potassium 2,5-dihydroxybenzenesulfonate (SHQ), phenolphthalin (PPL), and 4,4′-biphenol (BP). The expected chemical structure of copolymers was confirmed by using FTIR and 1H NMR. To balance the performance for PEM applications, the proportion of four different components were controlled. The influences of the carboxylic acid groups on the structure and properties of SPEN, including thermal and mechanical properties, oxidative stability, water uptake, swelling, proton conductivity, and methanol permeability, were investigated in detail. The results revealed that SPEN membranes containing nitrile and carboxylic acid groups could lead low water absorption, swelling, and methanol penetration. In such a way, efficient proton transport channels were constructed by the formation of the hydrogen bonds. The proton conductivity of SPEN with high sulfonation degree (DS >?0.6) was higher than 0.05 S/cm and increased with increasing temperature. Especially, the conductivity of SPEN-0.6 and SPEN-0.7 reached up to 0.157 and 0.267 S/cm at 80 °C, respectively. Meanwhile, SPEN membranes exhibit low methanol permeability (0.13 ×?10-6– 0.52 ×?10-6 cm2·s?1). Consequently, the highest selectivity of SPEN-0.6 reaches 2.02 ×?105 S·cm?3·s, which is about 4.5 times higher than that of Nafion 117 (0.45 ×?105 S·cm?3·s). All the data prove that this series of membranes exhibits excellent comprehensive performance and might have potential applications in direct methanol fuel cells.  相似文献   

10.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane (PEM), based on Nafion® (E. I. du Pont de Nemours and Co., Ltd., for its copolymer of tetrafluoroethylene and perfluorinated vinyl ether) and sulfonic acid (-SO3H) or phosphotungstic acid (PWA) modified nanosilica (Si-SO3H or Si-PWA, respectively), for direct methanol fuel cell (DMFC) applications are described. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy (SEM), water uptake, methanol permeability and ion exchange capacity, as well as proton conductivity. The Nafion®/Si-PWA and Nafion®/Si-SO3H membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, a higher selectivity parameter, in comparison to the neat Nafion® or Nafion®/pristine nanosilica membranes. The obtained results indicated that both the Nafion®/Si-PWA and Nafion®/Si-SO3H membranes could be utilized as promising polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

11.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane (PEM), based on Nafion® and imidazole modified multi-walled carbon nanotubes (MWCNT-Im), for direct methanol fuel cell (DMFC) applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of multi-walled carbon nanotubes (MWCNT), and the negatively charged sulfonic acid groups of Nafion®, new electrostatic interactions can be formed in the interface of the Nafion® and MWCNT-Im which result in both lower methanol permeability and also higher proton conductivity. The physical characteristics of these manufactured nanocomposite membranes were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), water uptake, methanol permeability and ion exchange capacity, as well as proton conductivity. The Nafion®/MWCNT-Im membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, a higher selectivity parameter in comparison to neat Nafion® or Nafion® containing –OH functionalized multi-walled carbon nanotubes (MWCNT-OH) membranes. The obtained results indicated that the Nafion®/MWCNT-Im membranes could be utilized as efficient polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

12.
Suwen Wang  Lei Jin  Zhongfang Li 《Ionics》2013,19(7):1027-1036
Polymer composite membranes based on sulfonated poly(phthalazinone ether sulfone) (SPPES) and zirconium sulfophenyl phosphate (ZrSPP) were prepared. Three ZrSPP concentrations were used: 10, 20, and 30 wt%. The membranes were characterized by infrared spectroscopy (IR), X-ray diffraction spectroscopy, thermal gravimetric analysis, and scanning electron microscopy (SEM). The IR results indicated the formation of intense hydrogen bonds between ZrSPP and SPPES molecules. The SEM micrographs showed that ZrSPP well dispersed with SPPES and form a lattice structure. The proton conductivity of the SPPES (degree of sulfonation (DS) 64 %)/ZrSPP (10 wt%) composite membrane reached 0.39 S/cm at 120 °C 100 % relative humidity and that of the 30 wt% of SPPES (DS 16.1 %)/ZrSPP composite membrane reached 0.18 S/cm at 150 °C. The methanol permeabilities of the SPPES/ZrSPP composite membranes were in the range of 2.1?×?10?8 to 0.13?×?10?8?cm2/s, much lower than that of Nafion®117 (10?6?cm2/s). The composite membranes exhibited good thermal stabilities, proton conductivities, and good methanol resistance properties.  相似文献   

13.
A series of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (S-PPO) and sulfonated poly(ether ether ketone) (S-PEEK) at various sulfonation degrees were prepared and characterized for their degree of sulfonation, water uptake, ion exchange capacity, proton conductivity and methanol permeability. Based on the obtained results, the optimum samples were determined and subsequently blended together at different compositions. A single glass transition temperature (Tg) was determined for all blend samples, which was attributed to the presence of sulfonate groups on polymer backbones resulting in the formation of electrostatic cross-linking besides phenyl–phenyl interactions. Moreover, the molecular level of mixing in blends was verified through WAXS patterns. According to the membrane selectivity and hydrolytic stability measurements, 75 wt.% of S-PPO and 25 wt.% of S-PEEK was selected as the optimum composition. Afterwards, different amounts of an organically modified montmorillonite (MMT) were incorporated into the predetermined optimum composition matrices to reduce the methanol permeability of the resulted nanocomposite proton exchange membranes. The XRD patterns of nanocomposites revealed the exfoliated microstructure of the clay nanolayers in the polymeric matrices. Transport property measurements of nanohybrid membranes showed that the maximum selectivity parameter of 75 wt.% S-PPO/25 wt.% S-PEEK composition appeared in the presence of 1.5 wt.% of MMT, which is 1.53 times higher than the corresponding value for Nafion® 117. The DMFC single cell test of the optimum nanohybrids membrane at 5 M methanol feed showed an open circuit voltage of 0.77 V and maximum power density of 135 mW cm? 2 in comparison with 0.67 V and 108 mW cm? 2 for Nafion® 117, respectively. Fabricated nanohybrid membranes, thanks to their high selectivity, desirable transport properties and tenability, could be considered as promising polyelectrolytes for direct methanol fuel cell applications.  相似文献   

14.
Hybrid nanomaterial based on the combination between a 2D silicate structure of a smectic clay (SWy) and 1D structures of carbon nanotubes has been synthesized and used as additive in the polymer matrix of Nafion for the preparation of electrolyte nanocomposite membranes. The CNTs anchored on the clay’s lamellae were subsequently oxidized and organo-functionalized by sulphonic groups. The hybrid membranes have been tested in direct methanol fuel cells (DMFCs) and studied by NMR spectroscopy (pulse field gradient technique and relaxation times), electrochemical impedance spectroscopy and SEM microscopy. The study of the molecular dynamics of methanol and protons, as well as the tests in the DMFC, shows the effectiveness of these “branched particles” for the reduction of the methanol crossover, whilst ensuring appropriate proton conductivity, especially in conditions of low humidity and high temperature (>100 °C).  相似文献   

15.
《Solid State Ionics》2009,180(40):1690-1693
Sulfonated poly(ether ether ketone)/polyethyleneimine (sPEEK/PEI) composite membranes were prepared to reduce the water uptake and methanol permeability of highly sulfonated PEEK membranes (> 65%). Incorporation of small amounts of PEI reduced ionic cluster size via electrostatic complex formation between anionic sulfonic groups of the sPEEK and the cationic amine groups of the PEI, and thus affected membrane properties considerably. Ion cluster size decreased with increasing PEI concentration by small angle X-ray scattering pattern. Addition of 1 wt.% of PEI resulted in reduction of water uptake and methanol permeability by 30% at 60 °C and 85% at room temperature, respectively. The thermal and mechanical stabilities were also enhanced by formation of physical cross-linking induced by electrostatic interactions between acid/base polymers. Although proton conductivity was also reduced by PEI incorporation as a part of the sulfonic acid groups involved in ionic complex formation, its effect on proton conductivity was not as strong as on methanol permeability.  相似文献   

16.
A series of proton-conducting composites has been synthesized from PVA/PAMPS [poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid)] using high molecular weight PVA (HMw-PVA). By applying high molecular weight PVA as a polymer matrix, a greater hydrophobicity of the membranes emerged, which endows them with reduced water uptake (70-90%) but high proton conductivity (0.06-0.1 S cm- 1), low methanol permeability (1/3 to 1/5 that of Nafion 117), and excellent oxidative stability towards Fenton's reagent. A DMFC fabricated with the above membrane showed a high power density of 15.8 mW cm- 2 at 30 °C, which reached 42.9 mW cm- 2 at 80 °C. An initial lifetime performance assessment in DMFC mode yielded a value of 70 h for stable cell operation.  相似文献   

17.
Trioctylphosphine (TOP)/Pd composites have been synthesized and used as a methanol-barrier material to modify the surface of Nafion 115. The TOP/Pd composites have been applied to the surface of Nafion instead of being incorporated into the Nafion matrix, to provide the best chance of maintaining the inherent proton conductivity of Nafion. The properties of the TOP/Pd-modified membrane, in terms of its conductivity and methanol permeability, as well as the performance of the membrane electrode assembly (MEA) in direct methanol fuel cell (DMFC), have been analyzed and compared with those of bare Nafion. The DMFC performance of the TOP/Pd-modified membrane is somewhat better than that of the bare Nafion one at methanol concentration of 2 M and significantly better at a high concentration of 5 M. The TOP/Pd-modified membrane is able to operate the DMFC using a high concentration of methanol, which can satisfy the requirement to reduce the reactant volumes for portable applications as well as to achieve high performance. In contrast to bare Nafion, the TOP/Pd-modified membrane with its well-adhering and crack-free modified surface shows effect on reducing the methanol loss.  相似文献   

18.
Previous literature has shown that poly(vinylidene fluoride)-graft-poly(styrene sulfonated acid) (PVDF-g-PSSA) exhibits a lower methanol permeability than commercial Nafion and so is better suited to use as a proton exchange membrane (PEM) in direct methanol fuel cells (DMFCs). A number of studies have suggested that the microstructures of ionic aggregates explain their lower methanol permeability, but few direct morphological observations have been reported. In this study, the use of a tapping mode atomic force microscope (AFM) and a high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) has identified the phase separation of PVDF and sulfonated PS, and ionic sulfonic aggregates, 3-5 nm, in sulfonated PS regions. An experiment to elucidate the microstructural changes in the membrane with and without methanol immersion shows that PVDF-g-PSSA has ionic aggregates with a more stable microstructure than Nafion.  相似文献   

19.
Organic/inorganic composite membranes were prepared using sulfonated poly(vinyl alcohol) (SPVA), mixed and cross-linked with different amounts of poly(vinyl alcohol)-grafted graphene oxide (PVA-g-GO). The introduction of PVA-g-GO to the membranes not only reduced the methanol permeability but also positively affected the mechanical properties: Increasing the PVA-g-GO content increased the blocking effect of GO. The PVA-g-GO/SPVA membranes were cross-linked with glutaraldehyde, resulting in the formation of cross-linking chains within the matrix, as well as between the matrix and the filler. Therefore, the microstructure of the PVA-g-GO/SPVA cross-linking membrane was different from that of the existing membranes. This structure also reduced the methanol permeability. The composite membranes exhibited proton conductivities ranging from 0.0141 to 0.0319 S/cm at 60 °C, and low methanol permeability ranging from 3.13?×?10?7 to 1.53?×?10?7 cm2 s?1 at 25 °C.  相似文献   

20.
《Solid State Ionics》2006,177(7-8):787-794
The present study involves the synthesis of sulfonated poly(3-ethyl-3-(hydroxymethyl)oxetane), sPTMPO, by end-capping the hydroxy-groups in the PTMPO with 1,4-butane sultone. A series of the polymer with different degrees of substitution was investigated. Furthermore, the subsequent use of the sulfonated PTMPO as the acidic component in proton conducting membranes was explored. The membranes were prepared by either a) mixing the partly sulfonated PTMPO with hexamethoxymethyl melamine (HMMM) to form cross-links by ether formation between the methylol groups on HMMM and the remaining hydroxyl groups on the hyperbranched polyether or b) using the sulfonated polyether in conjunction with a pyridine functionalised polysulfone, PSU-pyridine, to produce acid–base blend membranes. Membrane properties such as proton conductivity, water uptake and mechanical properties are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号