首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of some model perfumes on surfactant self-assembly has been investigated, using small-angle neutron scattering. A range of different model perfumes, with differing degrees of hydrophilicity/hydrophobicity, have been explored, and in order of increasing hydrophobicity include phenyl ethanol (PE), rose oxide (RO), limonene (LM), linalool (LL), and dihydrogen mercenol (DHM). The effect of their solubilization on the nonionic surfactant micelles of dodecaethylene monododecyl ether (C12EO12) and on the mixed surfactant aggregates of C12EO12 and the cationic dialkyl chain surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) has been quantified. For PE and LL the effect of their solubilization on the micelle, mixed micelle/lamellar and lamellar regimes of the C12EO12/DHDAB mixtures, has also been determined. For the C12EO12 and mixed DHDAB/C12EO12 micelles PE is solubilized predominantly at the hydrophilic/hydrophobic interface, whereas the more hydrophobic perfumes, from RO to DHM, are solubilized predominantly in the hydrophobic core of the micelles. For the C12EO12 micelles, with increasing perfume concentration, the more hydrophobic perfumes (RO to DHM) promote micellar growth. Relatively modest growth is observed for RO and LM, whereas substantial growth is observed for LL and DHM. In contrast, for the addition of PE the C12EO12 micelles remain as relatively small globular micelles, with no significant growth. For the C12EO12/DHDAB mixed micelles, the pattern of behavior with the addition of perfume is broadly similar, except that the micellar growth with increasing perfume concentration for the more hydrophobic perfumes is less pronounced. In the Lbeta (Lv) region of the DHDAB-rich C12EO12/DHDAB phase diagram, the addition of PE results in a less structured (less rigid) lamellar phase, and ultimately a shift toward a structure more consistent with a sponge or bicontinuous phase. In the mixed L1/Lbeta region of the phase diagram PE induces a slight shift in the coexistence from Lbeta toward L1. The addition of LL to the Lbeta (Lv) region of the DHDAB-rich C12EO12/DHDAB phase diagram also results in a reduction in the lamellar structure (less rigid lamellae), and a shift toward a structure more consistent with a sponge or bicontinuous phase, or a coexisting phase of small vesicles. For the mixed L1/Lbeta region of the phase diagram LL induces a shift toward a greater L beta component.  相似文献   

2.
We have studied the lyotropic liquid-crystalline behaviour of cationic surfactants containing a potentially thermotropic moiety, a terminal cyanobiphenyloxy group. Both mono-alkyl and mid-chain substituted dialkyl surfactants have been examined using optical microscopy and NMR spectroscopy. Incorporation of the cyanobiphenyloxy group destabilizes the hexagonal and bicontinuous cubic phases, with only an extensive lamellar region being observed. For the dialkyl surfactant there is a range of compositions where two lamellar phases co-exist, one water-rich and the second surfactant-rich.  相似文献   

3.
Abstract

We have studied the lyotropic liquid-crystalline behaviour of cationic surfactants containing a potentially thermotropic moiety, a terminal cyanobiphenyloxy group. Both mono-alkyl and mid-chain substituted dialkyl surfactants have been examined using optical microscopy and NMR spectroscopy. Incorporation of the cyanobiphenyloxy group destabilizes the hexagonal and bicontinuous cubic phases, with only an extensive lamellar region being observed. For the dialkyl surfactant there is a range of compositions where two lamellar phases co-exist, one water-rich and the second surfactant-rich.  相似文献   

4.
The formation of mixed aggregates has been investigated in the mixture of oppositely charged surfactants vastly differing in molecular geometry and size. The systems considered is mixture of the cationic gemini surfactant, ethanediyl-1,2-bis(dodecyldimethylammonium bromide), and anionic surfactant, sodium dodecyl sulfate. Various mixed nano- and microaggregates (micelles, vesicles, thin lamellar sheets, and tubules) were formed depending on bulk composition and total surfactant concentration. Two types of aggregates were found in precipitate, the tubules as prevailing aggregates on the gemini-rich side, and vesicles as prevailing aggregates on the SDS-rich side. The tubules formation was ascribed to mutual influence of specific structure of cationic dimeric surfactant and electrostatic interactions at the bilayer/solution interface. The proposed mechanism involved the formation of lamellar sheets, which rolled-up into tubules.  相似文献   

5.
The evolution of the microstructure and composition occurring in the aqueous solutions of di-alkyl chain cationic/nonionic surfactant mixtures has been studied in detail using small angle neutron scattering, SANS. For all the systems studied we observe an evolution from a predominantly lamellar phase, for solutions rich in di-alkyl chain cationic surfactant, to mixed cationic/nonionic micelles, for solutions rich in the nonionic surfactant. At intermediate solution compositions there is a region of coexistence of lamellar and micellar phases, where the relative amounts change with solution composition. A number of different di-alkyl chain cationic surfactants, DHDAB, 2HT, DHTAC, DHTA methyl sulfate, and DISDA methyl sulfate, and nonionic surfactants, C12E12 and C12E23, are investigated. For these systems the differences in phase behavior is discussed, and for the mixture DHDAB/C12E12 a direct comparison with theoretical predictions of phase behavior is made. It is shown that the phase separation that can occur in these mixed systems is induced by a depletion force arising from the micellar component, and that the size and volume fraction of the micelles are critical factors.  相似文献   

6.
Monoalkyl and dialkyl quarternary ammonium salt-type cationic surfactants containing a phenoxy group as aromatic chromophores at different positions of alkyl chains were synthesized. Monoalkyl-type surfactants formed micelles in aqueous solutions. The bilayer structure similar to that found in phospholipid liposomes was obtained in the aqueous dispersions of dialkyl-type surfactants. The phenoxy groups were partially oriented and aligned in these molecular assemblies. The interactions of aligned phenoxy groups in micelles or bilayers resulted in luminescence with lower energy than that of the monomer fluorescence or in a radiationless deactivation of excited states. Such interactions could be effectively prevented in bilayer structures composed of surfactant molecules containing a “spacer chain” between aligned chromophores. Evidence was obtained supporting energy migrations between aligned chromophores that were separated by a dodecyl chain in the bilayer structure.  相似文献   

7.
A systematic study on phase behavior of the mixture of nonionic surfactants with alcohols at 30.0+/-0.1 degrees C was carried out. The total surfactant concentration was kept to 0.1 M varying the mole ratio of n-octyl beta-d-glucopyranoside (OG) and tetraethylene glycol monododecyl ether. Two uniphasic regions were found, the lamellar phase at low OG mole fraction and micelles at high OG mole fraction. The presence of OG favors the lamellae-micelle transition. Alkanols and benzyl alcohol were used as cosurfactants. The more hydrophobic alcohols (octanol and decanol) increase the OG content in the mixed bilayers. On the contrary, benzyl alcohol is not as favorable to the OG incorporation in the lamellar phase as in the mixed micelles. The L(3) phase has only been found as a uniphasic region with hexanol.  相似文献   

8.
The miscibility and interactions between components in mixed adsorbed films and micelles containing zwitterionic (dodecyl sulfobetaine--DSB) and cationic (dodecyltrimethylammonium bromide) or anionic (sodium dodecyl sulfonate) surfactant, respectively, have been investigated. The molecular interactions have been quantified by the values of the excess free energy of adsorption (DeltaGS,Exc) and micelle formation (DeltaGM,Exc). The obtained results indicate nonideal behavior of the investigated mixtures since the values of DeltaGS,Exc and DeltaGM,Exc) are negative. Moreover, it has been found that DSB interact more strongly with anionic surfactant as compared to cationic surfactant owing to different structure of mixed monolayers and micelles.  相似文献   

9.
Controllable synthesis of conducting polypyrrole nanostructures   总被引:3,自引:0,他引:3  
Wire-, ribbon-, and sphere-like nanostructures of polypyrrole have been synthesized by solution chemistry methods in the presence of various surfactants (anionic, cationic, or nonionic surfactant) with various oxidizing agents [ammonium persulfate (APS) or ferric chloride (FeCl3), respectively]. The surfactants and oxidizing agents used in this study have played a key role in tailoring the nanostructures of polypyrrole during the polymerization. It is inferred that the lamellar structures of a mesophase are formed by self-assembly between the cations of a long chain cationic surfactant [cetyltrimethylammonium bromide (CTAB) or dodeyltrimethylammonium bromide (DTAB)] and anions of oxidizing agent APS. These layered mesostructures are presumed to act as templates for the formation of wire- and ribbon-like polypyrrole nanostructures. In contrast, if a short chain cationic surfactant octyltrimethylammonium bromide (OTAB) or nonionic surfactant poly(ethylene glycol) mono-p-nonylphenyl ether (Opi-10) is used, sphere-like polypyrrole nanostructures are obtained, whichever of the oxidizing agents mentioned above is used. In this case, micelles resulting from self-assembly among surfactant molecules are envisaged to serve as the templates while the polymerization happens. It is also noted that, if anionic surfactant sodium dodeyl surfate (SDS) is used, no characteristic nanostructures of polypyrrole were observed. This may be attributed to the doping effect of anionic surfactants into the resulting polypyrrole chains, and as a result, micelles self-assembled among surfactant molecules are broken down during the polymerization. The effects of monomer concentration, surfactant concentration, and surfactant chain length on the morphologies of the resulting polypyrrole have been investigated in detail. The molecular structures, composition, and electrical properties of the nanostructured polypyrrole have also been investigated in this study.  相似文献   

10.
Simulations of mixed cationic/anionic wormlike micellar systems have been carried out for a wide range of compositions, including pure anionic and cationic systems. It was found that the wormlike micelle formed by only cationic surfactant molecules is unstable and transforms to a set of small spherical micelles. Adding anionic surfactants with a short hydrophobic chain (only eight carbon atoms) results in stable wormlike micelles. The 34/66 cationic/anionic worm is stable and symmetrical, while the 50/50 mixture yields a flattened worm, indicating a phase transition to the lamellar phase. All these observations are in excellent agreement with the experimental results of Raghavan et al. (Langmuir 2002, 18, 3797), and they provide a molecular mechanism for their observations. The addition of octyltrimethylammonium chloride increases the radius of the worm due to the bigger hydrophobic part. Meanwhile, the length of the worms decreases with the concentration of cationic surfactant and reaches a minimum for the 50/50 mixture. The latter system is of special interest due to a zero surface charge density. The worm with the electrostatically neutral surface was used to investigate intermicellar interactions. The molecular dynamics (MD) simulations show that the merging process requires a substantial activation energy even in the case of reduced electrostatic repulsion.  相似文献   

11.
The self-assembly of dialkyl chain cationic surfactant dihexadecyldimethyl ammonium bromide, DHDAB, and nonionic surfactants monododecyl hexaethylene glycol, C(12)E(6), and monododecyl dodecaethylene glycol, C(12)E(12), mixtures has been studied using predominantly small-angle neutron scattering, SANS. The scattering data have been used to produce a detailed phase diagram for the two surfactant mixtures and to quantify the microstructure in the different regions of the phase diagram. For cationic-surfactant-rich compositions, the microstructure is in the form of bilamellar, blv, or multilamellar, mlv, vesicles at low surfactant concentrations and is in an L(beta) lamellar phase at higher surfactant concentrations. For nonionic-rich compositions, the microstructure is predominantly in the form of relatively small globular mixed surfactant micelles, L(1). At intermediate compositions, there is an extensive mixed (blv/mlv) L(beta)/L(1) region. Although broadly similar, in detail there are significant differences in the phase behavior of DHDAB/C(12)E(6) and DHDAB/C(12)E(12) as a result of the increasing curvature associated with C(12)E(12) aggregates compared to that of C 12E 6 aggregates. For the DHDAB/C(12)E(12) mixture, the mixed (blv/mlv) L(beta)/L(1) phase region is more extensive. Furthermore, C(12)E(12) has a greater impact upon the rigidity of the bilayer in the blv, mlv, and L(beta) regions than is the case for C(12)E(6). The general features of the phase behavior are also reminiscent of that observed in phospholipid/surfactant mixtures and other related systems.  相似文献   

12.
Spatially resolved small-angle neutron scattering, SANS, has been used to investigate the response of the mixed microstructure of the dialkyl chain cationic and nonionic surfactant mixtures of (2,3-diheptadecyl ester ethoxy-n-propyl-1), 1,1,1-trimethyl ammonium chloride/octadecyl monododecyl ether, DHTAC/C18EO10, and DHTAC/dodecyl monododecadecyl ether, Coco20, over the velocity flow pattern of a crossed-slot elongational flow cell. The two different surfactant mixtures have different relative amounts of lamellar and micellar components, and this results in some differences in the flow-induced response. For the DHTAC/C18EO10, which is predominantly in the form of lamellar fragments, a complex pattern of orientational ordering is observed which reflects the competition between or demixing of the two principal flow directions in the cell.  相似文献   

13.
Spin probe EPR spectroscopy has been employed to study the effect of a cationic monomer, trimethyl(methacryloxyethyl)ammonium methyl sulfate, on the formation, local structure, and dynamics of sodium octyl sulfate micelles in aqueous solutions. It has been established that the monomer does not affect significantly the parameters of probe rotation in micelles of this surfactant, thereby indicating a weak interaction between the studied monomer and surfactant micelles. The absence of a template effect upon monomer polymerization in micellar sodium octyl sulfate solutions, which has been confirmed by unchanged molecular-mass characteristics of obtained polymers, indicates that it is inefficient to use sodium octyl sulfate micelles as a template for radical polymerization of cationic monomers in aqueous media, in contrast to sodium dodecyl sulfate micelles studied previously.  相似文献   

14.
The nonionic surfactant Tween80 is a commonly used excipient in drug formulations containing an active substance with low aqueous solubility. Model drug vehicles with varying charge density were obtained by mixing Tween80 (PS-80) with the cationic surfactant Tetradecyltrimethylammonium chloride (TTAC), thus forming mixed micelles. The micelles were mixed with the negatively charged polyelectrolyte mucin, which is a component in the protective mucus layer covering epithelial cell linings. Depending on the composition of the mixture, complex-formation could be followed by precipitation. Using X-ray diffraction, it was found that the precipitate contained a lamellar phase with properties sensitive to the proportion of PS-80. Higher amounts of PS-80 were found to oppose phase separation. Further analysis in the one-phase region, or alternatively of the supernatant of two-phase samples, by (1)H NMR, HPLC, and diffusion measurements with PGSE-NMR led to the conclusions that at low proportion of PS-80 aggregates composed of mixed (PS-80 and TTAC) micelles and mucin were formed, whereas increased concentrations of PS-80 favored the dissolution of the precipitate and limited the interactions between mixed micelles and the polymer.  相似文献   

15.
The aggregation of a hydrophilic-hydrophobic diblock copolymer consisting of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(methyl methacrylate) (PMMA) in aqueous solution has been investigated by small-angle neutron scattering. This polybase is extensively protonated at low pH and forms micelles with a dense core of PMMA and a diffuse coronal layer of cationic PDMAEMA. Addition of salt induced micellar growth, brought about by charge screening and more efficient packing of the chains. As a result, the aggregation number increased from 8 up to 31. A similar effect was observed at low concentrations of an anionic surfactant, sodium dodecyl sulfate (SDS) since the net cationic charge in the hydrophilic coronal layer was reduced due to surfactant binding. However, at higher surfactant concentrations, a drastic structural reorganization occurred, as the PMMA became solubilized into the SDS micellar cores and the PDMAEMA chains interacted with the surfactant micelles, resulting in a "pearl-necklace" structure. The presence of the cationic polyelectrolyte significantly increased the population of SDS micelles by effectively lowering the critical micelle concentration of this anionic surfactant.  相似文献   

16.
The effect of the spacer structure (linear, cyclic, bicyclic) and dissymmetry of alkyl fragment in a series of dicationic gemini surfactants on the ability to form thermotropic liquid crystals and on the micellar properties was studied. Transitions crystal-thermotropic liquid crystals-isotropic solution were studied using differential scanning calorimetry and optical microscopy. The self-diffusion coefficients of micelles and monomers of the dicationic dialkyl derivatives of 1,4-diazabicyclo[2.2.2]octane in water were determined by pulsed field gradient NMR spectroscopy. The effect of the surfactant structure on the values of critical micelle concentrations, hydrodynamic radii, and aggregation numbers of micelles was analyzed.  相似文献   

17.
We applied a molecular assembly formed in an aqueous surfactant mixture of cationic cetyltrimethylammonium bromide (CTAB) and anionic sodium octylsulfate (SOS) as templates of mesoporous silica materials. The hexagonal pore size can be controlled between 3.22 and 3.66 nm with the mixed surfactant system. In addition, we could observe the lamellar structure of the mixed surfactants with precursor molecules, which strongly shows the possibility of precise control of both the pore size and the structure of pores by changing the mixing ratio of surfactants. Moreover, use of the cationic surfactant having longer hydrophobic chain like stearyltrimethylammonium bromide (STAB) caused the increase in d(100) space and shifted the point of phase transition from hexagonal phase to lamellar phase to lower concentration of SOS.  相似文献   

18.
The formation and microstructure of cubic phases were investigated in anionic and cationic surfactant-containing systems at 25 degrees C. In the system sodium dodecyl sulfate(SDS)-dodecyltrimethylammonium bromide(DTAB)-water, mixing of two surfactants shows the phase transition hexagonal phase (H(1))-->surfactant precipitate, accompanied by an obvious decrease in the cross-sectional area per surfactant in the rod micelles of the hexagonal liquid crystal. In the mixed systems brine(A)-dodecane(B)-SDS(C)-DTAB(D)-hexanol(E), the isotropic discontinuous cubic phase is formed from the H(1) phase at a low cationic surfactant weight fraction, Y=D/(C+D), and from the lamellar phase at high Y upon dilution with equal amounts of oil and brine, respectively. The minimum surfactant concentration to form the cubic phase decreases with increases both in cationic surfactant weight fraction Y from 0 to 0.30 and in hexanol weight fraction, W(1)=E/(C+D+E), accordingly. The maximum solubilization for oil of the cubic phase reaches 43 wt% at 14 wt% of mixed surfactants and alcohol. Copyright 2000 Academic Press.  相似文献   

19.
Hydrazine nitrate (HN), an inorganic salt, was first found to have dual effects on inducing obvious viscoelasticity of both cationic and anionic surfactant solutions. It was interesting that the surfactant solutions exhibited characteristic wormlike micelle features with strong viscoelastic properties upon the addition of this inorganic salt. The rheological properties of the surfactant solutions have been measured and discussed. The apparent viscosity of the solutions showed a volcano change with an increase of the HN concentration. Correspondingly, the microstructures of the micelles in the solutions changed with the apparent viscosity. First, wormlike micelles began to form and grew with an increase of the HN concentration. Subsequently, the systems exhibited linear viscoelasticity with characteristics of a Maxwell fluid in the intermediate mass fraction range, which originated from a 3D entangled network of wormlike micelles. Finally, a transition from linear micelles to branched ones probably took place at higher HN contents. In addition, the origin of the dual effects brought by HN addition on inducing viscoelasticity in both cationic and anionic surfactant solutions was investigated.  相似文献   

20.
Solubilization and interaction of azo-dye light yellow (X6G) at/with cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) was investigated spectrophotometricaly. The effect of cationic micelles on solubilization of anionic azo dye in aqueous micellar solutions of cationic surfactants was studied at pH 7 and 25 degrees C. The binding of dye to micelles implied a bathochromic shift in dye absorption spectra that indicates dye-surfactant interaction. The results showed that the solubility of dye increased with increasing surfactant concentration, as a consequence of the association between the dye and the micelles. The binding constants, K(b), were obtained from experimental absorption spectra. By using pseudo-phase model, the partition coefficients between the bulk water and surfactant micelles, K(x), were calculated. Gibbs energies of binding and distribution of dye between the bulk water and surfactant micelles were estimated. The results show favorable solubilization of dye in CTAB micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号