首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The host–guest interaction of symmetrical α,α′,δ,δ′-tetramethyl-cucurbit[6]uril (TMeQ[6]) with the hydrochloride salts of N,N′-bis(4-pyridylmethyl)-1,6-hexanediamine (P6), N,N′-bis(3-pyridyl-methyl)-1,6-hexanediamine (M6) and N,N′-bis(2-pyridylmethyl)-1,6-hexanediamine (O6) was investigated via single crystal X-ray diffraction, 1H NMR spectroscopy, electronic absorption spectroscopy and fluorescence spectroscopy. Single crystal X-ray diffraction showed that the hexyl moiety of P6 or M6 was incorporated in the cavity of TMeQ[6], while the two pyridylmethyl moieties of O6 were incorporated in the TMeQ[6] cavity in the solid state. The 1H NMR results in aqueous solution revealed that the TMeQ[6]-P6 and TMeQ[6]-M6 host–guest interaction systems produce a kinetic dumbbell-shaped inclusion complex at the initial stage and then an equilibrium pseudorotaxane-shaped inclusion complex as the only product after heating. However, only the pseudorotaxane-shaped inclusion complex was observed for the TMeQ[6]-O6 host–guest interaction system. Aqueous absorption spectrophotometric analysis showed that the dumbbell-shaped inclusion complexes were stable at pH 5.6, had a host–guest ratio of 2:1 and formed quantitatively at ~1011 l2/mol2 for the TMeQ[6]-M6 and TMeQ[6]-O6 systems. The transformation from dumbbell to pseudorotaxane-shaped inclusion complexes for the TMeQ[6]-P6 and TMeQ[6]-M6 host–guest systems yielded activation energies of 59.35 ± 1.55 and 78.7 ± 3.45 kJ/mol, respectively. The pseudorotaxane-shaped inclusion complexes were stable at pH 5.6, had a host–guest ratio of 1:1 and formed quantitatively at ~107 l/mol for the TMeQ[6]-M6 and TMeQ[6]-P6 systems.  相似文献   

2.

The construction of a square-wave-shaped one-dimensional polyrotaxane using a preorganized L-shaped [3]pseudorotaxane and metal ion is reported. A phenanthroline derivative having two N -(3-pyridylmethyl)-1,4-butanediammonium "arms" was synthesized as a preorganized L-shaped ligand. This L-shaped ligand easily forms a stable [3]pseudorotaxane incorporating cucurbituril (CB[6]). The reaction of the [3]pseudorotaxane with Ni(II) or Zn(II) ion produces a square-wave-shaped one-dimensional-polyrotaxane.  相似文献   

3.
A series of novel dinuclear platinum(II) complexes were synthesized with bidentate nitrogen donor ligands. The two platinum centers are connected by an aliphatic chain of variable length. The selected chelating ligand system should stabilize the complex toward decomposition. The pK(a) values and reactivity of four synthesized complexes, viz. [Pt(2)(N(1),N(4)-bis(2-pyridylmethyl)-1,4-butanediamine)(OH(2))(4)](4+) (4NNpy), [Pt(2)(N(1),N(6)-bis(2-pyridylmethyl)-1,6-hexanediamine)(OH(2))(4)](4+) (6NNpy), [Pt(2)(N(1),N(8)-bis(2-pyridylmethyl)-1,8-octanediamine)(OH(2))(4)](4+) (8NNpy), and [Pt(2)(N(1),N(10)-bis(2-pyridylmethyl)-1,10-decanediamine)(OH(2))(4)](4+) (10NNpy), were investigated. This system is of special interest because only little is known about the substitution behavior of dinuclear platinum complexes that contain a bidentate chelate that forms part of the aliphatic bridging ligand. Spectrophotometric acid-base titrations were performed to determine the pK(a) values of the coordinated water ligands. The substitution of coordinated water by thiourea was studied under pseudofirst-order conditions as a function of nucleophile concentration, temperature, and pressure, using stopped-flow techniques and UV-vis spectroscopy. The results for the dinuclear complexes were compared to those for the corresponding mononuclear reference complex [Pt(aminomethylpyridine)(OH(2))(2)](2+) (monoNNpy), by which the effect of increasing the aliphatic chain length on the bridged complexes could be investigated. The results indicated that there is a clear interaction between the two platinum centers, which becomes weaker as the chain length between the metal centers increases. In addition, quantum chemical calculations were performed to support the interpretation and discussion of the experimental data.  相似文献   

4.
The molecular binding behaviour of the symmetrically substituted tetramethylcucurbit[6]uril (TMeQ[6]) was examined in relationship to the two pyridine-based molecular guests 1,6-hexanedipyridinium dication (Hdipy2+) and the HCl salt of N,N′-bis(3-pyridylmethyl)-diaminoethane (Ediamp). The interactions and binding modes of each guest with TMeQ[6] are discussed using solution results (1H NMR spectroscopy) and solid-state findings (single-crystal X-ray diffraction), to evaluate interactions in common. Supramolecular structures are formed that rely on a combination of the now typical driving forces associated with Q[n] as a molecular host, which are dipole–ion, hydrophobic, H-bonding and in the present examples include π…π and C–H…π interactions.  相似文献   

5.
[structure: see text] The single-crystal X-ray structure determination of N,N'-bis[(S)-(+)-1-methoxycarbonyl-2-(4-imidazolyl)ethyl]-2,6-pyridinedicarboxamide (L-BHisPA) and the D-isomer (D-BHisPA) derived from the corresponding chiral histidine revealed a left- and right-handed helical conformation, respectively, through intramolecular hydrogen bonding and chirality of the podand histidyl moieties. Furthermore, each helical molecule is connected by continuous intermolecular hydrogen bonds to afford a left- or right-handed helical assembly, respectively, in the crystal packing.  相似文献   

6.
The light-induced high-spin-->low-spin relaxation for the Fe(II) spin-crossover compounds [Fe(btpa)](PF6)2 and [Fe(b(bdpa))](PF6)2 in solution, where btpa is the potentially octadentate ligand N,N,N',N'-tetrakis(2-pyridylmethyl)-6,6'-bis(aminomethyl)-2,2'-bipyridine and b(bdpa) is the analogous hexadentate ligand N,N'-bis(benzyl)-N,N'-bis(2-pyridylmethyl)-6,6'-bis(aminomethyl)-2,2'- bipyridine, respectively, has been studied by temperature-dependent laser flash photolysis. [Fe(b(bdpa))](PF6)2 shows single-exponential 5T2-->1A1 relaxation kinetics, whereas [Fe(btpa)](PF6)2 exhibits solvent-independent biphasic relaxation kinetics. The fast process of [Fe(btpa)](PF6)2 with a rate constant, kHL, of 2.5 x 10(7) s-1 at 295 K and an activation energy, Ea, of 1294(26) cm-1 in methanol can be assigned to the 5T2-->1A1 relaxation as well. The slow process with a kHL(295 K) of 3.7 x 10(5) s-1 and a Ea of 2297(32) cm-1 in methanol--which is the slowest light-induced relaxation process observed so far for an Fe(II) spin-crossover complex in solution--is assigned to a coupling of the 5T2-->1A1 relaxation process to a geometrical rearrangement within the pendent pyridyl arms.  相似文献   

7.
The complex [Gd(L)(H2O)]3- (H(6)L =N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-methylenephosphonic acid) displays the highest water exchange rate ever measured for a Gd(III) chelate (k(298)(ex)= 8.8 x 10(8) s(-1)), which is attributed to the flexibility of the metal coordination environment.  相似文献   

8.
Linear tetradentate N2Py2 ligands can coordinate to an octahedral FeII center in three possible topologies (cis-alpha, cis-beta, and trans). While for the N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane (bpmen) complex, only the cis-alpha topology has been observed, for N,N'-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (bpmcn) both cis-alpha and cis-beta isomers have been reported. To date, no facile interconversion between cis-alpha and cis-beta topologies has been observed for ironII complexes even at high temperatures. However, this work provides evidence for facile interconversion in solution of cis-alpha, cis-beta, and trans topologies for [Fe(bpmpn)X2] (bpmpn=N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane; X=triflate, CH3CN) complexes. As reported previously, the catalytic behavior of cis-alpha and cis-beta isomers of [Fe(bpmcn)(OTf)2] with respect to olefin oxidation depends dramatically on the geometry adopted by the iron complex. To establish a general pattern of the catalysis/topology dependence, this work presents an extended comparison of the catalytic behavior for oxidation of olefins of a family of [Fe(N2py2)] complexes that present different topologies. 18O labeling experiments provide evidence for a complex mechanistic landscape in which several pathways should be considered. Complexes with a trans topology catalyze only non-water-assisted epoxidation. In contrast, complexes with a cis-alpha topology, such as [Fe(bpmen)X2] and [Fe(alpha-bpmcn)(OTf)2], can catalyze both epoxidation and cis-dihydroxylation through a water-assisted mechanism. Surprisingly, [Fe(bpmpn)X2] and [Fe(beta-bpmcn)(OTf)2] catalyze epoxidation via a water-assisted pathway and cis-dihydroxylation via a non-water-assisted mechanism, a result that requires two independent and distinct oxidants.  相似文献   

9.
The 3+2 cycloaddition reaction of 1-(4-phenylphenacyl)-1,10-phenanthrolinium ylide 4 with activated alkynes gave pyrrolo[1,2- 4a][1,10]phenanthrolines 6a-d. The "one pot" synthesis of 6a,b,d from 4, activated alkenes, Et(3)N and tetrakis-pyridine cobalt (II) dichromate (TPCD) is described. The helical chirality of pyrrolophenanthrolines 6b-d was put in evidence by NMR spectroscopy.  相似文献   

10.
A 1D double-zigzag framework, {[Zn(paps)(2)(H(2)O)(2)](ClO(4))(2)}(n) (1; paps = N,N'-bis(pyridylcarbonyl)-4,4'-diaminodiphenyl thioether), was synthesized by the reaction of Zn(ClO(4))(2) with paps. However, a similar reaction, except that dry solvents were used, led to the formation of a novel 2D polyrotaxane framework, [Zn(paps)(2)(ClO(4))(2)](n) (2). This difference relies on the fact that water coordinates to the Zn(II) ion in 1, but ClO(4)(-) ion coordination is found in 2. Notably, the structures can be interconverted by heating and grinding in the presence of moisture, and such a structural transformation can also be proven experimentally by powder and single-crystal X-ray diffraction studies. The related N,N'-bis- (pyridylcarbonyl)-4,4'-diaminodiphenyl ether (papo) and N,N'-(methylenedi-para-phenylene)bispyridine-4-carboxamide (papc) ligands were reacted with Zn(II) ions as well. When a similar reaction was performed with dry solvents, except that papo was used instead of paps, the product mixture contained mononuclear [Zn(papo)(CH(3)OH)(4)](ClO(4))(2) (5) and the polyrotaxane [Zn(papo)(2)(ClO(4))(2)](n) (4). From the powder XRD data, grinding this mixture in the presence of moisture resulted in total conversion to the pure double-zigzag {[Zn(papo)(2)(H(2)O)(2)](ClO(4))(2)}(n) (3) immediately. Upon heating 3, the polyrotaxane framework of 4 was recovered. The double-zigzag {[Zn(papc)(2)(H(2)O)(2)](ClO(4))(2)}(n) (6) and polyrotaxane [Zn(papc)(2)(ClO(4))(2)](n) (7) were synthesized in a similar reaction. Although upon heating the double-zigzag 6 undergoes structural transformation to give the polyrotaxane 7, grinding solid 7 in the presence of moisture does not lead to the formation of 6. Significantly, the bright emissions for double-zigzag frameworks of 1 and 3 and weak ones for polyrotaxane frameworks of 2 and 4 also show interesting mechanochromic luminescence.  相似文献   

11.
Treatment of U(acac)4 with the hexadentate Schiff base H2L(i) gave the [UL(i)2] complexes 1-4 [H2L1=N,N'-bis(3-methoxysalicylidene)-2-methyl-1,2-propanediamine, H2L2=N,N'-bis(3-methoxysalicylidene)-1,2-phenylenediamine, H2L3=N,N'-bis(3-methoxysalicylidene)-2-aminobenzylamine and H2L4=N,N'-bis(3-methoxysalicylidene)-2,2-dimethyl-1,3-propanediamine for 1-4, respectively]. The [U(L(i))(acac)2] compounds could not be isolated because of their ready disproportionation into [UL(i)2] and U(acac)4. Compounds 2 and 4 adopt a meridional configuration in the solid state and in solution, while exists in solution as the two equilibrating meridional and sandwich isomers and crystallizes in the meridional isomeric form. Reaction of U(acac)4 with H4L5 afforded the expected compound [U(H2L5)(acac)2] (5) [H4L5=N,N'-bis(3-hydroxysalicylidene)-2-methyl-1,2-propanediamine] but, in the presence of H4L6 and H4L7, U(acac)4 was transformed in a serendipitous and reproducible manner into the tri- and tetranuclear U(IV) complexes [U3(L6)(HL6)2(acac)2] (6) and [U4(HL7)4(H2L7)2] (7) [H4L6=N,N'-bis(3-hydroxysalicylidene)-1,2-phenylenediamine and H4L7=N,N'-bis(3-hydroxysalicylidene)-2-aminobenzylamine]. The crystal structures of 6.3thf and 7.5thf show the assembling role of the Schiff-base ligands.  相似文献   

12.
The reactions of potentially hexadentate H2bbpen (N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)-ethylenediamine, H2L1), H2(Cl)bbpen (N,N'-bis(5-chloro-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L2), and H2(Br)bbpen (N,N'-bis(5-bromo-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L3) with Ln(III) ions in the presence of a base in methanol resulted in three types of complexes: neutral mononuclear ([LnL(NO3)]), monocationic dinuclear ([Ln2L2(NO3)]+), and monocationic trinuclear ([Ln3L2(X)n(CH3OH)]+), where X = bridging (CH3COO-) and bidentate ligands (NO3-, CH3COO-, ClO4-) and n is 4. The formation of a complex depends on the base (hydroxide or acetate) and the size of the respective Ln(III) ion. All complexes were characterized by infrared spectroscopy, mass spectrometry, and elemental analyses; in some cases, X-ray diffraction studies were also performed. The structures of the neutral mononuclear [Yb(L1)(NO3)], dinuclear [Pr2(L1)2(NO3)(H2O)]NO3.CH3OH and [Gd2(L1)2(NO3)]NO3.CH3OH.3H2O, and trinuclear [Gd3(L3)2(CH3COO)4(CH3OH)]ClO4.5CH3OH and [Sm3(L1)2(CH3COO)2(NO3)2(CH3OH)]NO3.CH3OH.3.65H2O were solved by X-ray crystallography. The [LnL(NO3)] or [Ln2L2(NO3)]+ complexes could be converted to [Ln3L2(X)n(CH3OH)]+ complexes by the addition of 1 equiv of a Ln(III) salt and 2-3 equiv of sodium acetate in methanol. The trinuclear complexes were found to be the most stable of the three types, which was evident from the presence of the intact monocationic high molecular weight parent peaks ([Ln3L2(X)n]+) in the mass spectra of all the trinuclear complexes and from the ease of conversion from the mononuclear or dinuclear to the trinuclear species. The incompatibility of the ligand denticity with the coordination requirements of the Ln(III) ions was proven to be a useful tool in the construction of multinuclear Ln(III) metal ion arrays.  相似文献   

13.
Interactions between a symmetrical tetramethyl-substituted cucurbit[6]uril (host: TMeQ[6]) and 1,ω-alkylenedipyridine (ω = 2, 4, 6, 8, 10) dicationic guests were investigated using 1H NMR spectroscopy and single crystal X-ray crystallography. In these inclusion complexes, combined cavity and portal binding in TMeQ[6] were observed, and the length of the bridged alkylene was found to play an important role not only in balancing the overall hydrophilic/hydrophobic interaction between the host and the guest, but also in defining the structure of the resulting inclusion complexes. For the guest 1,2-ethylenedipyridine (Edpy), TMeQ[6] includes a positively charged pyridine ring of Edpy to form an unsymmetrical inclusion complex; for the guest 1,4-butylenedipyridine (Bdpy), TMeQ[6] includes a positively charged pyridine ring of Bdpy, but the different competitive interactions in and between the related inclusion complexes could lead to a fast exchange between the hosts and guests. For the guests with longer bridge chains, such as 1,6-hexamethylenedipyridine (Hdpy) or 1,8-octylenedipyridine (Odpy), a stable pseudorotaxane inclusion complex is formed by combining the hydrophobic cavity and the outer portal dipole-ion interactions. However, for 1,10-decatylenedipyridine (Ddpy), the two TMeQ[6] host molecules include the two end pyridine rings of Ddpy and form a dumbbell inclusion complex. Supported by the National Natural Science Foundation of China (Grant Nos. 20662003 & 20767001), the International Collaborative Project of Guizhou Province (Grant No. 2007400108), the Science Technology Fund of Guizhou Province (Grant No. J-2008-2012) and the Natural Science Youth Foundation of Guizhou University (Grant No. 2007-005)  相似文献   

14.
Three cucurbit[6]uril (CB[6])-based polyrotaxanes [Cu(H2 C6N4)(CB[6])]Cl4·12H2O (1), [Co(H2 C6N4)(CB[6])]Cl4·14H2O (2) and [Ag(C6N4)(CB[6])]NO3·7H2O (3) are prepared using N,N′-bis(4-pyridylmethyl)-1,6-hexanediamine (C6N4) threading into CB[6]'s and metal ions' assistance. Single-crystal X-ray diffraction analyses reveal that polyrotaxanes 1, 2 and 3 all have 1D chain structure where 1 and 2 are linear and 3 has two shapes, linear and sawtooth, respectively. The effects of guest molecules, metal and counter ions as well as intermolecular weak interactions on the architectures of polyrotaxanes are discussed.  相似文献   

15.
1H-NMR spectroscopic analysis indicates that cucurbit[7]uril can form a stable inclusion complex with 1,6-hexanediamine, while cucurbit[5]uril cannot form pseudorotaxane with 1,6-hexanediamine under our experimental conditions. This was confirmed by the crystal structure of the complex. The cavity of cucurbit[8]uril seems to be large for binding 1,6-hexanediamine efficiently. And a simple, mild, high-yield (>80%) method has been described for the synthesis of rotaxanes through the self-assembly of pseudorotaxanes of cucurbit[n]uril (n=6, 7)/1, 6-hexanediamine and sodium tetraphenylborate. The obtained rotaxanes are held intact solely by noncovalent interactions, and are characterized by elemental analysis, 1H-NMR, ESI-MS and MALDI-TOF MS.  相似文献   

16.
Four semirigid ditopic ligands, N,N'-bis(3-pyridylmethyl)-pyromellitic diimide (L(1)), N,N'-bis(4-pyridylmethyl)-pyromellitic diimide (L(2)), N,N'-bis(3-pyridylmethyl)-naphthalene diimide (L(3)), and N,N'-bis(4-pyridylmethyl)-naphthalene diimide (L(4)), reacted with Cd(NO(3))(2) to result in four cadmium(II) complexes, namely, {[Cd(2)(L(1))(2)(NO(3))(4)(CH(3)OH)(4)]·H(2)O} (1), [Cd(L(2))(NO(3))(2)(CH(3)OH)(2)·Cd(2)(L(2))(3)(NO(3))(4)]·{4(HCCl(3))·2H(2)O}(n) (2), {[Cd(L(3))(2)(NO(3))(2)]}(n) (3), and {[Cd(L(4))(2)(NO(3))(2)]·2(CHCl(3))}(n) (4). These complexes have been characterized by elemental analyses, powder X-ray diffraction, thermogravimetric (TG) analyses, IR spectroscopy, and single-crystal X-ray diffraction. Structural analyses show that four types of structures are formed: (1) a discrete M(2)L(2) ring with two Cd ions and two cis-L(1) ligands comprising a zero-dimensional molecular rectangle (0D), (2) an unusual zigzag linear chain and a one-dimensional ladder existing simultaneously in the crystal lattice (1D), (3) a two-dimensional network of the (4,4) net structure (2D), and (4) an unusual chiral three-dimensional framework with 5-fold interpenetrating diamond (dia) topology (3D). In these complexes, the ligands exhibit different coordination modes and construct various architectures by bridging Cd(NO(3))(2) inorganic building blocks. These results suggest that structural diversity of the complexes is tunable by ligand modifications, that is, varying the ligand spacer bulkiness or substituent position of terminal group. Furthermore, gas adsorption measurements indicate that 4 possesses moderate CO(2) uptake and some adsorption selectivity for CO(2) over N(2).  相似文献   

17.
The semiquinone-catecholate based mixed valence complex, [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] x DMF (1), and catecholate based (H2bispictn)[Mn2III(Cl4Cat)4(DMF)2] (2) (bispicen = N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine, bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, Cl4Cat = tetrachlorocatecholate dianion, and Cl4SQ = tetrachlorosemiquinone radical anion) were synthesized directly utilizing a facile route. Both the complexes have been characterized by single crystal X-ray diffraction study. The electronic structures have been elucidated by UV-vis-NIR absorption spectroscopy, cyclic voltammetry, EPR, and magnetic properties. The structural as well as spectroscopic features support the mixed valence tetrachlorosemiquinone-tetrachlorocatecholate charge distribution in 1. The ligand based mixed valence state was further confirmed by the presence of an intervalence charge transfer (IVCT) band in the 1900 nm region both in solution and in the solid. The intramolecular electron transfer, a phenomenon known as valence tautomerism (VT), has been followed by electronic absorption spectroscopy. For 1, the isomeric form [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] is favored at low temperature, while at an elevated temperature, the [FeII(bispicen)(Cl4SQ)2] redox isomer dominates. Infrared as well as UV-vis-NIR spectral characterization for 2 suggest that the MnIII(Cat)2- moiety is admixed with its mixed valence semiquinone-catecholate isomer MnII(SQ)(Cat)-, and the electronic absorption spectrum is dominated by the mixed charged species. The origin of the intervalence charge transfer band in the 1900 nm range is associated with the mixed valence form, MnII(Cl4Cat)(Cl4SQ)-. The observation of VT in complex 1 is the first example where a mixed valence semiquinone-catecholate iron(III) complex undergoes intramolecular electron transfer similar to manganese and cobalt complexes.  相似文献   

18.
利用^1HNMR技术以及单晶X衍射技术考察对称四甲基取代六元瓜环(TMeQ[6])与几种1,ω-亚烷基吡啶阳离子(ω=2,4,6,8,10)客体的相互作用.在这些包结配合物中,TMeQ[6]的端口效应以及空腔效应同时存在,其主客体作用模式随着客体亚烷基碳链长短不一而各不相同.对于客体1,2-二乙基吡啶(Edpy),TMeQ[6]包结Edpy的带正电荷的吡啶环部分,形成一不对称的包结配合物;对于客体1,4-二丁基吡啶(Bdpy),TMeQ[6]选择性包结Bdpy的吡啶环部分或烷基部分存在竞争作用和快速交换;而具有较长碳链的客体1,6-二己基吡啶(Hdpy)和1,8-二丁庚基吡啶(Odpy)与TMeQ[6]通过空腔的疏水作用以及外部的离子-偶极作用形成稳定的类轮烷包结配合物;客体1,10-二癸基吡啶(Ddpy)的两个吡啶环分别被两个TMeQ[6]包结形成哑铃型的包结配合物.  相似文献   

19.
Almost optically pure (+)- and (−)-2-fluorophenyl-4-fluorophenyl-2-pyridylmethyl methacrylate (2F4F2PyMA) monomers were obtained by HPLC resolution of the racemic monomer and polymerized with the use of anionic and free-radical initiators. Helix-sense selectivity during the polymerization seemed to be governed mainly by the chirality of the monomer itself, and the polymers obtained by using the complex of N,N′-diphenylethylenediamine monolithium amide with (S)-(+)-1-(2-pyrrolidinylmethyl)pyrrolidine (PMP) in toluene at −78°C appeared to possess single-handed helical conformation (+)-poly[(−)-2F4F2PyMA], [α]365 + 1510°; (−)-poly[(+)-2F4F2PyMA], [α]365 − 1610°]. The single-handed helical (+)-poly[(−)-2F4F2PyMA] and (−)-poly[(+)-2F4F2PyMA] obtained with the PMP complex exhibited better chiral recognition ability toward trans-stilbene oxide compared with the single-handed helical poly(rac-2F4F2PyMA) prepared previously. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2645–2648, 1999  相似文献   

20.
Zhu BX  Zhang QL  Zhang YQ  Zhu T  Clegg JK  Lindoy LF  Wei G 《Inorganic chemistry》2008,47(21):10053-10061
The interaction of the diastereopure N,N'-bis(acetylacetone)cyclohexanediimine ligands, L(1)(1R,2R), L(2)(1S,2S), and their 1:1 mixture, with Zn(II) chloride has been investigated. Four new coordination polymers, [ZnL(1)Cl2 x H2O]n (1), [ZnL(2)Cl2 x H2O]n (2), [ZnL(2)Cl2]n (3), and [Zn6(L(2))6Cl12 x 2 H2O]n (4), each consisting of an infinite single helical chain displaying different pitches and/or handedness have been isolated. The complexed Schiff base ligands are present in their deprotonated enol forms, and the nitrogen atoms, which do not coordinate, are protonated because of proton transfer from the adjacent enol oxygen (coupled with concomitant N-H...O bond formation); each bound ligand is thus pseudo-zwitterionic. The respective zinc centers are bound to two chloro ligands and two oxygen donors from acacH-imine units belonging to different N,N'-bis(acetylacetone)cyclohexanediimine ligands such that the coordination at each zinc is distorted tetrahedral. Compounds 1 and 2, prepared from enantiopure L(1) and L(2), respectively, are enantiomers with similar structures, with the helical pitch in each being 17.0 A. Overall, the structure of 3 may be described as a one-dimensional helical chain with a pitch of 17.3 A, with each period corresponding to two L(2) ligands and two metal centers. The structure of [(Zn6L(2)6Cl12) x 2 H2O]n (4) contains six Zn(II) centers connected via six L(2) ligands to form a "bowed" helical repeat unit, with the pitch of the helix corresponding to 43.5 A. Supramolecular (intra- and intermolecular) aspects of all these unusual polymeric structures are discussed. Finally, the synthesis and characterization of an unprecedented six zinc-node discrete supramolecular assembly, [Zn6(L(1))3(L(2))3Cl12] (5), incorporating a 78-membered metallacycle, is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号