首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where V(x)  ~  |x|s, h(t)  ~  ts{V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}. Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n − 2)l = ω 1. We prove that if m < p £ 1+(m-1)(1+s)+\frac2(s+1)+sn+l{m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if ${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has global solutions for some u 0 ≥ 0.  相似文献   

2.
LetR n be n-dimensional Euclidean space with n>-3. Demote by Ω n the unit sphere inR n. ForfɛL n ) we denote by σ N δ its Cesàro means of order σ for spherical harmonic expansions. The special value l = \tfracn - 22\lambda = \tfrac{{n - 2}}{2} of σ is known as the critical one. For 0<σ≤λ, we set p0 = \tfrac2ld+ lp_0 = \tfrac{{2\lambda }}{{\delta + \lambda }} . This paper proves that
limN ? ¥ || sNd (f) - f ||p0 = 0\mathop {\lim }\limits_{N \to \infty } \left\| {\sigma _N^\delta (f) - f} \right\|p_0 = 0  相似文献   

3.
We study the large time behaviour of nonnegative solutions of the Cauchy problemu tu mu p,u(x, 0)=φ(x). Specifically we study the influence of the rate of decay ofφ(x) for large |x|, and the competition between the diffusion and the absorption term.  相似文献   

4.
Let Ω be an open subset of R d , d≥2, and let x∈Ω. A Jensen measure for x on Ω is a Borel probability measure μ, supported on a compact subset of Ω, such that ∫udμ≤u(x) for every superharmonic function u on Ω. Denote by J x (Ω) the family of Jensen measures for x on Ω. We present two characterizations of ext(J x (Ω)), the set of extreme elements of J x (Ω). The first is in terms of finely harmonic measures, and the second as limits of harmonic measures on decreasing sequences of domains. This allows us to relax the local boundedness condition in a previous result of B. Cole and T. Ransford, Jensen measures and harmonic measures, J. Reine Angew. Math. 541 (2001), 29–53. As an application, we give an improvement of a result by Khabibullin on the question of whether, given a complex sequence {α n } n=1 and a continuous function , there exists an entire function f≢0 satisfying f n )=0 for all n, and |f(z)|≤M(z) for all zC.  相似文献   

5.
The aim of this study is to prove global existence of classical solutions for systems of the form ${\frac{\partial u}{\partial t} -a \Delta u=-f(u,v)}The aim of this study is to prove global existence of classical solutions for systems of the form \frac?u?t -a Du=-f(u,v){\frac{\partial u}{\partial t} -a \Delta u=-f(u,v)} , \frac?v?t -b Dv=g(u,v){\frac{\partial v}{\partial t} -b \Delta v=g(u,v)} in (0, +∞) × Ω where Ω is an open bounded domain of class C 1 in \mathbbRn{\mathbb{R}^n}, a > 0, b > 0 and f, g are nonnegative continuously differentiable functions on [0, +∞) × [0, +∞) satisfying f (0, η) = 0, g(x,h) £ C j(x)eahb{g(\xi,\eta) \leq C \varphi(\xi)e^{\alpha {\eta^\beta}}} and g(ξ, η) ≤ ψ(η)f(ξ, η) for some constants C > 0, α > 0 and β ≥ 1 where j{\varphi} and ψ are any nonnegative continuously differentiable functions on [0, +∞) such that j(0)=0{\varphi(0)=0} and limh? +¥hb-1y(h) = l{ \lim_{\eta \rightarrow +\infty}\eta^{\beta -1}\psi(\eta)= \ell} where is a nonnegative constant. The asymptotic behavior of the global solutions as t goes to +∞ is also studied. For this purpose, we use the appropriate techniques which are based on semigroups, energy estimates and Lyapunov functional methods.  相似文献   

6.
We consider nonnegative solutions of initial-boundary value problems for parabolic equationsu t=uxx, ut=(um)xxand (m>1) forx>0,t>0 with nonlinear boundary conditions−u x=up,−(u m)x=upand forx=0,t>0, wherep>0. The initial function is assumed to be bounded, smooth and to have, in the latter two cases, compact support. We prove that for each problem there exist positive critical valuesp 0,pc(withp 0<pc)such that forp∃(0,p 0],all solutions are global while forp∃(p0,pc] any solutionu≢0 blows up in a finite time and forp>p csmall data solutions exist globally in time while large data solutions are nonglobal. We havep c=2,p c=m+1 andp c=2m for each problem, whilep 0=1,p 0=1/2(m+1) andp 0=2m/(m+1) respectively. This work was done during visits of the first author to Iowa State University and the Institute for Mathematics and its Applications at the University of Minnesota. The second author was supported in part by NSF Grant DMS-9102210.  相似文献   

7.
One considers a semilinear parabolic equation u t = Lua(x)f(u) or an elliptic equation u tt + Lua(x)f(u) = 0 in a semi-infinite cylinder Ω × ℝ+ with the nonlinear boundary condition , where L is a uniformly elliptic divergent operator in a bounded domain Ω ∈ ℝn; a(x) and b(x) are nonnegative measurable functions in Ω. One studies the asymptotic behavior of solutions of such boundary-value problems for t → ∞. __________ Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 26, pp. 368–389, 2007.  相似文献   

8.
We investigate the existence of nonnegative weak solutions to the problem ut=Δ(um)−p|∇u| in Rn×(0,∞) with +(1−2/n)<m<1. It will be proved that: (i) When 1<p<2, if the initial datum u0D(Rn) then there exists a solution; (ii) When 1<p<(2+mn)/(n+1), if the initial datum u0(x) is a bounded and nonnegative measure then the solution exists; (iii) When (2+mn)/(n+1)?p<2, if the initial datum is a Dirac mass then the solution does not exist. We also study the large time behavior of the L1-norm of solutions for 1<p?(2+mn)/(n+1), and the large time behavior of t1/βu(⋅,t)−Ec(⋅,t)L for (2+mn)/(n+1)<p<2.  相似文献   

9.
In this paper we consider the boundary blow-up problem Δpua(x)uq in a smooth bounded domain Ω of \mathbbRN{\mathbb{R}}^N, with u = +∞ on ∂Ω. Here Dpu = div(|?u|p-2?u)\Delta_{p}u = {\rm div}(|\nabla u|^{p-2}\nabla u) is the well-known p-Laplacian operator with p > 1, qp − 1, and a(x) is a nonnegative weight function which can be singular on ∂Ω. Our results include existence, uniqueness and exact boundary behavior of positive solutions.  相似文献   

10.
In this paper, we first consider a delay difference equation of neutral type of the form: Δ(y n + py n−k + q n y n−l = 0 for n∈ℤ+(0) (1*) and give a different condition from that of Yu and Wang (Funkcial Ekvac, 1994, 37(2): 241–248) to guarantee that every non-oscillatory solution of (1*) with p = 1 tends to zero as n→∞. Moreover, we consider a delay reaction-diffusion difference equation of neutral type of the form: Δ1(u n,m + pu n−k,m ) + q n,m u n−l,m = a 2Δ2 2 u n +1, m−1 for (n,m) ∈ℤ+ (0) ×Ω, (2*) study various cases of p in the neutral term and obtain that if p≥−1 then every non-oscillatory solution of (2*) tends uniformly in m∈Ω to zero as n→∞; if p = −1 then every solution of (2*) oscillates and if p < −1 then every non-oscillatory solution of (2*) goes uniformly in m∈Ω to infinity or minus infinity as n→∞ under some hypotheses. Received July 14, 1999, Revised August 10, 2000, Accepted September 30, 2000  相似文献   

11.
LetB(x,y) be the sum taken over alln, 1≤nx, such that n can be represented as a sum of two squares of integers andn has no prime factors exceedingy. It is shown foru smaller than about .5log logx/log log logx thatB(x,x 1/u)≈cxlog-1/2 xσ(u), where σ(u satisfies a delay differential equation similar to the one satisfied by the Dickman function andc is a positive constant.  相似文献   

12.
For integers m ≥ 3 and 1 ≤ ℓ ≤ m − 1, we study the eigenvalue problems − u (z) + [( − 1)(iz) m  − P(iz)]u(z) = λu(z) with the boundary conditions that u(z) decays to zero as z tends to infinity along the rays argz=-\fracp2±\frac(l+1)pm+2\arg z=-\frac{\pi}{2}\pm \frac{(\ell+1)\pi}{m+2} in the complex plane, where P is a polynomial of degree at most m − 1. We provide asymptotic expansions of the eigenvalues λ n . Then we show that if the eigenvalue problem is PT\mathcal{PT}-symmetric, then the eigenvalues are all real and positive with at most finitely many exceptions. Moreover, we show that when gcd(m,l)=1\gcd(m,\ell)=1, the eigenvalue problem has infinitely many real eigenvalues if and only if one of its translations or itself is PT\mathcal{PT}-symmetric. Also, we will prove some other interesting direct and inverse spectral results.  相似文献   

13.
In this paper we consider the boundary blow-up problem Δpua(x)uq in a smooth bounded domain Ω of , with u = +∞ on ∂Ω. Here is the well-known p-Laplacian operator with p > 1, qp − 1, and a(x) is a nonnegative weight function which can be singular on ∂Ω. Our results include existence, uniqueness and exact boundary behavior of positive solutions.   相似文献   

14.
We investigate the large time behavior of positive solutions with finite mass for the viscous Hamilton-Jacobi equationu t = Δu + |Δu| p ,t>0,x ∈ ℝ N , wherep≥1 andu(0,.)=u 0≥0,u 0≢0,u 0L 1. DenotingI =lim t→∞u(t)1≤∞, we show that the asymptotic behavior of the mass can be classified along three cases as follows:
–  • ifp≤(N+2)/(N+1), thenI =∞ for allu 0;
–  • if (N+2)/(N+1)<p<2, then bothI =∞ andI <∞ occur;
–  • ifp≥2, thenI <∞ for allu 0.
We also consider a similar question for the equationu tu+u p .  相似文献   

15.
We consider the equation y m u xx u yy b 2 y m u = 0 in the rectangular area {(x, y) | 0 < x < 1, 0 < y < T}, where m < 0, b ≥ 0, T > 0 are given real numbers. For this equation we study problems with initial conditions u(x, 0) = τ(x), u y (x, 0) = ν(x), 0 ≤ x ≤ 1, and nonlocal boundary conditions u(0, y) = u(1, y), u x (0, y) = 0 or u x (0, y) = u x (1, y), u(1, y) = 0 with 0≤yT. Using the method of spectral analysis, we prove the uniqueness and existence theorems for solutions to these problems  相似文献   

16.
 We prove that the solution u of the equation u t =Δlog u, u>0, in (Ω\{x 0})×(0,T), Ω⊂ℝ2, has removable singularities at {x 0}×(0,T) if and only if for any 0<α<1, 0<a<b<T, there exist constants ρ0, C 1, C 2>0, such that C 1 |xx 0|αu(x,t)≤C 2|xx 0|−α holds for all 0<|xx 0|≤ρ0 and atb. As a consequence we obtain a sufficient condition for removable singularities at {∞}×(0,T) for solutions of the above equation in ℝ2×(0,T) and we prove the existence of infinitely many finite mass solutions for the equation in ℝ2×(0,T) when 0≤u 0L 1 (ℝ2) is radially symmetric and u 0L loc 1(ℝ2). Received: 16 December 2001 / Revised version: 20 May 2002 / Published online: 10 February 2003 Mathematics Subject Classification (1991): 35B40, 35B25, 35K55, 35K65  相似文献   

17.
We study the initial-boundary-value problem of the diffusion equation u t = Δu m ? V (x)u m + u p in a conelike domain D = [1,∞) × Ω, where V (x) ~ ω 2 |x| ?2 with ω 2 > 0. Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace–Beltrami operator on Ω, and let l denote the positive root of l 2 + (n ? 2)l = ω 1 + ω 2. We prove that if m < p ≤ m + 2/(n + l), then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if p > m + 2/(n + l), then the problem has global solutions for some \( {u_0}\gneq 0 \) .  相似文献   

18.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where \({V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}\). Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n ? 2)l = ω 1. We prove that if \({m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if \({p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}\), then the problem has global solutions for some u 0 ≥ 0.  相似文献   

19.
Let P(D) be a partial differential operator with constant coefficients which is surjective on the space A(Ω) of real analytic functions on a covex open set Ω⊂ℝ n . Let L(P m ) denote the localizations at ∞ (in the sense of H?rmander) of the principal part P m . Then Q(x+iτN)≠ 0 for (x,τ)∈ℝ n ×(ℝ\{ 0}) for any QL(P m ) if N is a normal to δΩ which is noncharacteristic for Q. Under additional assumptions this implies that P m must be locally hyperbolic. Received: 24 January 2000  相似文献   

20.
In accordance with the demands of the so-called local approach to inverse problems, the set of “waves” uf (·, T) is studied, where uf (x,t) is the solution of the initial boundary-value problem utt−Δu=0 in Ω×(0,T), u|t<0=0, u|∂Ω×(0,T)=f, and the (singular) control f runs over the class L2((0,T); H−m (∂Ω)) (m>0). The following result is established. Let ΩT={x ∈ Ω : dist(x, ∂Ω)<T)} be a subdomain of Ω ⊂ ℝn (diam Ω<∞) filled with waves by a final instant of time t=T, let T*=inf{T : ΩT=Ω} be the time of filling the whole domain Ω. We introduce the notation Dm=Dom((−Δ)m/2), where (−Δ) is the Laplace operator, Dom(−Δ)=H2(Ω)∩H 0 1 (Ω);D−m=(Dm)′;D−mT)={y∈D−m:supp y ⋐ ΩT. If T<T., then the reachable set R m T ={ut(·, T): f ∈ L2((0,T), H−m (∂Ω))} (∀m>0), which is dense in D−mT), does not contain the class C 0 T). Examples of a ∈ C 0 , a ∈ R m T , are presented. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 210, 1994, pp. 7–21. Translated by T. N. Surkova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号