首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns the slow viscous flow through an aggregate of concentric clusters of porous cylindrical particles with Happel boundary condition. An aggregate of clusters of porous cylindrical particles is considered as a hydro-dynamically equivalent to solid cylindrical core with concentric porous cylindrical shell. The Brinkman equation inside the porous cylindrical shell and the Stokes equation outside the porous cylindrical shell in their stream function formulations are used. The drag force acting on each porous cylindrical particle in a cell is evaluated. In certain limiting cases, drag force converges to pre-existing analytical results, such as, the drag on a porous circular cylinder and the drag on a solid cylinder in a Happel unit cell. Representative results are then discussed and presented in graphical forms. The hydrodynamic permeability of the membrane built up from porous particles is evaluated. The variation of hydrodynamic permeability with different parameters is graphically presented. Some new results are reported for flow pattern in the porous region. Being in resemblance with the model of colloid particles with a coating of porous layers due to adsorption phenomenon, results obtained through this model can be useful to study the membrane filtration process.  相似文献   

2.
This paper presents a fourth-order kernel-free boundary integral method for the time-dependent, incompressible Stokes and Navier-Stokes equations defined on irregular bounded domains. By the stream function-vorticity formulation, the incompressible flow equations are interpreted as vorticity evolution equations. Time discretization methods for the evolution equations lead to a modified Helmholtz equation for the vorticity, or alternatively, a modified biharmonic equation for the stream function with two clamped boundary conditions. The resulting fourth-order elliptic boundary value problem is solved by a fourth-order kernel-free boundary integral method, with which integrals in the reformulated boundary integral equation are evaluated by solving corresponding equivalent interface problems, regardless of the exact expression of the involved Green's function. To solve the unsteady Stokes equations, a four-stage composite backward differential formula of the same order accuracy is employed for time integration. For the Navier-Stokes equations, a three-stage third-order semi-implicit Runge-Kutta method is utilized to guarantee the global numerical solution has at least third-order convergence rate. Numerical results for the unsteady Stokes equations and the Navier-Stokes equations are presented to validate efficiency and accuracy of the proposed method.  相似文献   

3.
A method is presented for determining the exact solution of the Stokes equation for axisymmetric streaming flow past a torus. By solving directly for the velocity and pressure fields rather than introducing a stream function, the problem is reduced to the solution of a second order difference equation for a coefficient sequence. The force acting on the torus is evaluated for a number of values of the parameter defining the torus geometry.
Zusammenfassung In dieser Arbeit wird eine Methode entwickelt um die exakte Lösung der Stokes' schen Gleichung für einen axisymmetrischen Fluss um einen Torus zu erhalten. Indem man direkt Geschwindgkeits- und Druckverteilung ausrechnet (statt eine Stromfunktion einzuführen) wird das Problem auf die Lösung einer Differenzengleichung zweiter Ordnung für eine Folge von Koeffizienten reduziert. Die am Torus wirksame Kraft wird dann für mehrere Parameterwerte der Torusgeometrie bestimmt.
  相似文献   

4.
计及管道边界条件滑移的影响,研究微极流体蠕动泵,经由圆柱形管道输运的Stokes流动.壁面运动的控制方程为正弦波方程.使用润滑理论,得到了轴向速度、微转动向量、流函数、压力梯度、摩擦力和机械效率的解析数值解.用图形表示出构成参数,如像耦合参数、微极参数和表征蠕流泵特性的滑移参数、摩擦力和俘获现象的影响.数值计算表明,当耦合参数较大时,需要蠕动泵的压力更大,而微极参数和滑移参数正相反.俘获团块的大小随耦合参数和微极参数的减小而缩小,而随滑移参数的增大而缩小.  相似文献   

5.
low of an incompressible viscous fluid past a porous sphere has been discussed. The flow has been divided in three regions. The Region-I is the region inside the porous sphere in which the flow is governed by Brinkman equation with the effective viscosity different from that of the clear fluid. In Regions II and III clear fluid flows and Stokes and Oseen solutions are respectively valid. In all the three regions Stokes stream function is expressed in powers of Reynolds number. Stream function of Region II is matched with that of Region I at the surface of the sphere by the conditions suggested by Ochao-Tapia and Whitaker and it is matched with that of Oseen’s solutions far away from the sphere. It is found that the drag on the sphere reduces significantly when it is porous and it decreases with the increase of permeability of the medium.Received: February 7, 2002; revised: April 8, 2003 / June 9, 2004  相似文献   

6.
The problem of determining the axisymmetric Stokes flow past an arbitrary body, the boundary shape of which can be represented by an analytic function, is examined by developing an exact method. An appropriate nonorthogonal coordinate system is introduced, and it is shown that the Hilbert space to which the stream function belongs is spanned by the set of Gegenbauer polynomials based on the physical argument that the drag on a body should be finite. The partial differential equation of the original problem is then reduced to two simultaneous vector differential equations. By the truncation of this infinite-dimensional system to the one-dimensional subspace, an explicit analytic solution to the Stokes equation valid for all bodies in question is obtained as a first approximation.  相似文献   

7.
The motion of a solid and no-slipping particle immersed in a shear flow along a sufficiently porous slab is investigated. The fluid flow outside and inside of the slab is governed by the Stokes and Darcy equations, respectively, and the so-called Beavers and Joseph slip boundary conditions are enforced on the slab surface. The problem is solved for a distant particle with length scale a in terms of the small parameter a/d where d designates the large particle–slab separation. This is achieved by asymptotically inverting a relevant boundary-integral equation on the particle surface, which has been recently proposed for any particle location (distant or close particle) in Khabthani et al. (J Fluid Mech 713:271–306, 2012). It is found that at order O(a/d) the slab behaves for any particle shape as a solid plane no-slip wall while the slab properties (thickness, permeability, associated slip length) solely enter at O((a/d)2). Moreover, for a spherical particle, the numerical results published in Khabthani et al. (J Fluid Mech 713:271–306, 2012) perfectly agree with the present asymptotic analysis.  相似文献   

8.
A. Kubik  L. Kleiser 《PAMM》2004,4(1):512-514
Trajectories of solid particles in laminar and turbulent flow over a backward‐facing step (BFS) were numerically computed by integrating the equation of motion for particles. The various forces acting on the particles [5],[6] were calculated for a variety of flow Reynolds numbers and for different particle characteristics such as the Stokes number and the particle‐to‐fluid density ratio. The investigation was conducted for the distinct flow regimes of the BFS flow separately. Generally, the drag and gravitation were found to be the most significant forces. The lift and history force were the next most important, mostly two orders of magnitude smaller, but in some cases closing up to the other two in importance. The pressure and virtual mass effects were very small for the majority of cases. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Isolated singularities on free surfaces of two-dimensional and axially symmetric three-dimensional steady potential flows with gravity are considered. A systematic study is presented, where known solutions are recovered and new ones found. In two dimensions, the singularities found include those described by the Stokes solution with a 120° angle, Craya's flow with a cusp on the free surface, Gurevich's flow with a free surface meeting a rigid plane at 120° angle, and Dagan and Tulin's flow with a horizontal free surface meeting a rigid wall at an angle less than 120°. In three dimensions, the singularities found include those in Garabedian's axially symmetric flow about a conical surface with an approximately 130° angle, flows with axially symmetric cusps, and flows with a horizontal free surface and conical stream surfaces. The Stokes, Gurevich, and Garabedian flows are exact solutions. These are used to generate local solutions, including perturbations of the Stokes solution by Grant and Longuet-Higgins and Fox, perturbations of Gurevich's flow by Vanden-Broeck and Tuck, asymmetric perturbations of Stokes flow and nonaxisymmetric perturbations of Garabedian's flow. A generalization of the Stokes solution to three fluids meeting at a point is also found.  相似文献   

10.
A stationary velocity field of the flow of a gaseous medium generated by uniform radial injection from the surface of a spherical particle near a wall is considered in the Stokes' approximation. Bispherical coordinates are used to write the expression for the stream function. A formula is obtained for the force acting on the spherical particle when there is an arbitrary mass flow from its surface, generalizing earlier results /1, 2/. An expression for the force acting on the particle is obtained for the case of spherically symmetric injection from the surface of the particle, and asymptotic formulas at short and long distances from the wall are studied.

An analogous problem concerning the forces of interaction between two spherical particles of the same radius, when uniform injection of equal intensity takes place from their surfaces, is discussed. This is equivalent to the problem of the interaction of a spherical particle with a free surface. A general expression for the force of interaction, and its asymptotic forms for short and long distances, are obtained.  相似文献   


11.
A meshfree method for two-phase immiscible incompressible flows including surface tension is presented. The continuum surface force (CSF) model is used to include the surface tension force. The incompressible Navier–Stokes equation is considered as the mathematical model. Application of implicit projection method results in linear second-order partial differential equations for velocities and pressure. These equations are then solved by the finite pointset method (FPM), which is a meshfree and Lagrangian method. The fluid is represented as finite number of particles and the immiscible fluids are distinguished by the color of each particle. The interface is tracked automatically by advecting the color functions for each particle. Two test cases, Laplace's law and the Rayleigh–Taylor instability in 2D have been presented. The results are found to be consistent with the theoretical results.  相似文献   

12.
The paper presents some coercive a priori estimates of the solution of the Dirichlet problem for the linear Stokes equation relating vorticity and the stream function of an axially symmetric flow of an incompressible fluid. This equation degenerates on the axis of symmetry. The method used to obtain the estimates is based on a differential substitution transforming the Stokes equation into the Laplace equation and on the subsequent transition from cylindrical to Cartesian coordinates in three-dimensional space.  相似文献   

13.
14.
In this paper, viscous flow over a shrinking sheet is solved analytically using a newly proposed second order slip flow model. The closed solution is an exact solution of the full governing Navier–Stokes equations. The solution has two branches in a certain range of the parameters. The effects of the two slip parameters and the mass suction parameter on the velocity distribution are presented graphically and discussed. For certain combinations of the slip parameters, the wall drag force can decrease with the increase of mass suction. These results clearly show that the second order slip flow model is necessary to predict the flow characteristics accurately.  相似文献   

15.
固相颗粒在钻井液振动筛筛面上的抛掷运动规律研究   总被引:1,自引:0,他引:1  
通过δ函数和单位阶跃函数表示平面惯性椭圆振动筛筛面上固相颗粒的受力,建立了微分方程形式的颗粒在筛面上的抛掷运动数学模型。对其解进行分析,给出了颗粒的抛掷周期和抛掷距离对于振动筛或岩屑参数的依赖关系以及这些关系的数值计算分析方法。  相似文献   

16.
Two circle theorems for two-dimensional steady Stokes flow are presented. The first theorem gives an expression for the stream function for a Stokes flow past a circular cylinder in terms of the stream function for a slow and steady irrotational flow in an unbounded incompressible viscous fluid. The second theorem gives a more general expression for the stream function for another Stokes flow past the circular cylinder in terms of the stream function for a slow and steady rotational flow in the same fluid.  相似文献   

17.
In some diseases there is a focal pattern of velocity in regions of bifurcation, and thus the dynamics of bifurcation has been investigated in this work. A computational model of blood flow through branching geometries has been used to investigate the influence of bifurcation on blood flow distribution. The flow analysis applies the time-dependent, three-dimensional, incompressible Navier–Stokes equations for Newtonian fluids. The governing equations of mass and momentum conservation were solved to calculate the pressure and velocity fields. Movement of blood flow from an arteriole to a venule via a capillary has been simulated using the volume of fluid (VOF) method. The proposed simulation method would be a useful tool in understanding the hydrodynamics of blood flow where the interaction between the RBC deformation and blood flow movement is important. Discrete particle simulation has been used to simulate the blood flow in a bifurcation with solid and fluid particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, and translational and angular momenta. These kinds of simulations open a new way for modeling the dynamics of complex, viscoelastic fluids at the micro-scale, where both liquid and solid phases are treated with discrete particles.  相似文献   

18.
We are concerned with the global solvability of the differential system introduced by Shliomis to describe the flow of a colloidal suspension of magnetized nanoparticles in a nonconducting liquid, under the action of an external magnetic field. The system is a combination of the Navier–Stokes equations, the magnetization equation, and the magnetostatic equations. We prove, by using a method of regularization, the existence of global‐in‐time weak solutions with finite energy to an initial boundary‐value problem and establish the long‐time behaviour of such solutions. The main difficulty is due to the singularity of the gradient magnetic force and the torque. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
We consider a time dependent Stokes problem that is motivated by two-phase incompressible flow problems with surface tension. The surface tension force results in a right-hand side functional in the momentum equation with poor regularity properties. As a strongly simplified model problem we treat a Stokes problem with a similar time dependent nonsmooth forcing term. We consider the implicit Euler and Crank-Nicolson methods for time discretization. The regularity properties of the data are such that for the Crank-Nicolson method one can not apply error analyses known in the literature. We present a convergence analysis leading to a second order error bound in a suitable negative norm that is weaker that the $L^2$ -norm. Results of numerical experiments are shown that confirm the analysis.  相似文献   

20.
液固两相圆柱绕流尾迹内颗粒扩散分布的离散涡数值研究   总被引:1,自引:0,他引:1  
基于离散涡方法求得的非定常水流场和颗粒的Lagrange运动方程,数值模拟了稀疏液固两相圆柱绕流尾迹内颗粒的扩散分布.获得了流动的涡谱与3种不同St数颗粒(St=0.25,1.0,40)在流场中的分布.通过引入扩散函数来定量表示颗粒在流场中的纵向扩散强度,并计算得到了不同St数颗粒的扩散函数随时间的变化.数值结果揭示出了液固两相圆柱绕流尾迹中的颗粒扩散分布与颗粒的St数和尾涡结构密切相关:1) 中小St数(St=0.25~4.0)颗粒在运动过程中不能进入涡核区,而在旋涡结构的外沿聚集,且颗粒的St数愈大,其越远离涡核区域;2) 在圆柱绕流尾迹区域内,中小St数(St=0.25~4.0)颗粒的纵向扩散强度随其St数的增大而减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号