首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

2.
A series of well‐defined triblock copolymers, poly(N, N‐dimethylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N, N‐dimethylacrylamide) (PDMA‐b‐PEO‐b‐PDMA) synthesized by atom transfer radical polymerization, were used as physical coatings for protein separation. A comparative study of EOF showed that the triblock copolymer presented good capillary coating ability and EOF efficient suppression. The effects of the Mr of PDMA block in PDMA‐b‐PEO‐b‐PDMA triblock copolymer and buffer pH on the separation of basic protein for CE were investigated. Moreover, the influence of the copolymer structure on separation of basic protein was studied by comparing the performance of PDMA‐b‐PEO‐b‐PDMA triblock copolymer with PEO‐b‐PDMA diblock copolymer. Furthermore, the triblock copolymer coating showed higher separation efficiency and better migration time repeatability than fused‐silica capillary when used in protein mixture separation and milk powder samples separation, respectively. The results demonstrated that the triblock copolymer coatings would have a wide application in the field of protein separation.  相似文献   

3.
The diblock copolymers of polystyrene and poly(tert‐butyl acrylate) (PSt‐b‐PtBA) with various molecular weights and hydrophobic/hydrophilic (styrene/acrylic acid) chain length were prepared by atom transfer radical polymerization (ATRP). Selective hydrolysis of the diblock copolymers (PSt‐b‐PtBA) resulted in amphiphilic block copolymers of polystyrene and poly(acrylic acid) (PSt‐b‐PAA). The amphiphilic block copolymers of PSt‐b‐PAA with average molecular weight (Mn) <7500 were proved to be critical in dispersing the pigments of UV curable ink‐jet inks for manufacturing the color filter. Incorporating DB2 diblock copolymer dispersants with styrene/acrylic acid ratio at 1.5 allowed more UV curable compositions in the red and blue inks without deteriorating pigment dispersing stability and jetting properties of the ink‐jet inks. The ink drops can be precisely ejected into the tiny color area. Better properties of the cured red stripe such as nanoindentation hardness and chemical resistance were found. The competing absorption of UV light by the blue pigment hindered the through cure of monomers near the interface between glass substrate and the blue stripe. This leads to lower hardness and poor chemical resistance of the UV cured blue stripe. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3337–3353, 2005  相似文献   

4.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


5.
Summary: A novel ABC triblock copolymer with a rigid‐rod block was synthesized by atom transfer radical polymerization (ATRP). First, a poly(ethylene oxide) (PEO)‐Br macroinitiator was synthesized by esterification of PEO with 2‐bromoisobutyryl bromide, which was subsequently used in the preparation of a poly(ethylene oxide)‐block‐poly(methyl methacrylate) (PEO‐b‐PMMA) diblock copolymer by ATRP. A poly(ethylene oxide)‐block‐poly(methyl methacrylate)‐block‐poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (PEO‐b‐PMMA‐b‐PMPCS) triblock copolymer was then synthesized by ATRP using PEO‐b‐PMMA as a macroinitiator.

ABC triblock copolymer with a rigid‐rod block.  相似文献   


6.
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

8.
A series of novel ABC2-type liquid-crystalline block copolymers with azobenzene moieties in the side chains were prepared by combination of atom transfer radical polymerization (ATRP) and the chemical modification reaction. First, the bromine-terminated diblock copolymer poly(ethylene oxide) monomethyl ether-block-polystyrene (MPEO-PS-Br) was prepared by ATRP of styrene initiated with macroinitiator MPEO-Br, which was obtained from the esterification of MPEO and 2-bromoisobutyryl bromide. Then, the bromo end groups of the resulting MPEO-PS-Br were derivatized into twice as many bromoisobutyrates by the chain end modification reaction to obtain ω,ω′-bis(bromo)-PS-MPEO (MPEO-PS-Br2). The azobenzene-containing blocks of poly[6-(4-methoxy-azobenzene-4′-oxy) hexyl methacrylate] (PMMAZO) with different molecular weights were introduced into the derivative diblock copolymer by a second ATRP to synthesize the novel ABC2-type liquid-crystalline block copolymers poly(ethylene oxide) monomethyl ether-block-polystyrene-block-{poly[6-(4-methoxy-azobenzene-4′-oxy) hexyl methacrylate]}2 [MPEO-PS-(PMMAZO)2].  相似文献   

9.
A series of ABC triblock copolymers, that is, polyisoprene‐block‐polystyrene‐block‐poly(ethylene oxide) (PI‐PS‐PEO), PI‐block‐poly(tert‐butyl acrylate)‐block‐PEO (PI‐PtBA‐PEO), and PI‐block‐poly(acrylic acide)‐block‐PEO (PI‐PAA‐PEO) were obtained by combination of anionic technique, atom transfer radical polymerization (ATRP), and single electron transfer nitroxide coupling (SETNRC) reaction. Anionic polymerization of isoprene followed by end capping with ethylene oxide yielded hydroxyl‐terminated PI. After esterification, PI with Br end group was used as a macroinitiator to initiate the polymerization of styrene and tBA by ATRP that was then trapped by 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group in PEO by SETNRC reaction rapidly with high efficiency in tetrahydrofuran at room temperature. The effect of reaction time and polymer chain length on SETNRC reaction was discussed in detail. In the presence of Cu0/tris[2‐(dimethylamino)ethyl]amine, SETNRC between PI‐PS‐Br and PEO‐TEMPO was carried out with the efficiency of up to 91.6% in 2 h. With the increase in polymer chain length, the efficiency decreased fleetly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   

11.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

12.
An original approach based on coupling methodology was used to prepare novel well‐defined ABA triblock copolymers, made of polyester‐type chain ends (A) associated with a polyacrylate midblock (B). Poly(ethylene terephthalate)‐block‐poly(lauryl acrylate)‐block‐poly(ethylene terephthalate) (PET‐b‐PLAc‐b‐PET) copolymers were achieved from poly(ethylene terephthalate)‐b‐poly(lauryl acrylate) (PET‐b‐PLAc) diblock ones. The first step consisted in the synthesis of diblock copolymers by atom transfer radical polymerization of lauryl acrylate starting from PET segment as a macroinitiator. In the second step, the coupling of diblock copolymers was achieved using four different methods, which were evaluated and compared: atom transfer radical coupling, “click” chemistry using the Huisgen's reaction, and coupling via a dithiol reagent or a diisocyanate molecule. Coupling using the Huisgen's reaction or a diisocyanate spacer proved to be the most efficient techniques. Even if these methods showed limitation and were only adapted for copolymers with low molecular weights, we managed to successfully prepare ABA triblock copolymers involving a polyester segment as end blocks and a polyacrylate moiety as midblock. To our knowledge, such kind of chemical structure has never been reported before and would be useful, possibly affording physical networks leading to rheological modification, for instance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A series of well‐defined poly[methyl(3,3,3‐trifluoropropyl)siloxane]‐b‐polystyrene‐b‐poly(tert‐butyl acrylate) (PMTFPS‐b‐PS‐b‐PtBA) triblock copolymers were prepared by a combination of anionic ring‐opening polymerization of 1,3,5‐trimethyl‐1,3,5‐tris(3′,3′,3′‐trifluoropropyl)cyclotrisiloxane (F3), and atom transfer radical polymerization (ATRP) of styrene (St) and tert‐butyl acrylate (tBA), using the obtained α‐bromoisobutyryl‐terminal PMTFPS (PMTFPS‐Br) as the macroinitiators. The ATRP of St from PMTFPS‐Br, as well as the ATRP of tBA from the obtained PMTFPS‐b‐PS‐Br macroinitiators, has typical characteristic of controlled/living polymerization. The results of contact angle measurements for the films of PMTFPS‐b‐PS‐b‐PtBA triblock copolymers demonstrate that the compositions have an effect on the wetting behavior of the copolymer films. For the copolymer films with different compositions, there may be different macroscale or nanoscale structures on the outmost layer of the copolymer surfaces. The films with high content of PtBA blocks exhibit almost no ordered microstructures on the outmost layer of the copolymer surfaces, even though they have microphase‐separated structures in bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
We followed the self-assembly of high-molecular weight MePEG- b -PCL (poly(methyl ethylene glycol)-block-poly(ε-caprolactone)) diblock and MePEG- b -PBO- b -PCL (poly(methyl ethylene glycol)-block-poly(1,2-butylene oxide)-block-poly(ε-caprolactone)) into micelles using molecular dynamics simulation with a coarse grain (CG) force field based on quantum mechanics (CGq FF). The triblock polymer included a short poly(1,2-butylene oxide) (PBO) at the hydrophilic-hydrophobic interface of these systems. Keeping the hydrophilic length fixed (MePEG45), we considered 250 chains in which the hydrophobic length changed from PCL44 or PBO6- b -PCL43 to PCL62 or PBO9- b -PCL61. The polymers were solvated in explicit water for 2 μs of simulations at 310.15 K. We found that the longer diblock system undergoes a morphological transition from an intermediate rod-like micelle to a prolate-sphere, while the micelle formed from the longer triblock system is a stable rod-like micelle. The two shorter diblock and triblock systems show similar self-assembly processes, both resulting in slightly prolate-spheres. The dynamics of the self-assembly is quantified in terms of chain radius of gyration, shape anisotropy, and hydration of the micelle cores. The final micelle structures are analyzed in terms of the local density components. We conclude that the CG model accurately describes the molecular mechanisms of self-assembly and the equilibrium micellar structures of hydrophilic and hydrophobic chains, including the quantity of solvent trapped inside the micellar core.  相似文献   

15.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

16.
Atom transfer radical polymerization conditions with copper(I) bromide/pentamethyldiethylenetriamine (CuBr/PMDETA) as the catalyst system were employed for the polymerization of tert‐butyl acrylate, methyl acrylate, and styrene to generate well‐defined homopolymers, diblock copolymers, and triblock copolymers. Temperature studies indicated that the polymerizations occurred smoothly in bulk at 50 °C. The kinetics of tert‐butyl acrylate polymerization under these conditions are reported. Well‐defined poly(tert‐butyl acrylate) (PtBA; polydispersity index = 1.14) and poly(methyl acrylate) (PMA; polydispersity index = 1.03) homopolymers were synthesized and then used as macroinitiators for the preparation of PtBA‐b‐PMA and PMA‐b‐PtBA diblock copolymers in bulk at 50 °C or in toluene at 60 or 90 °C. In toluene, the amount of CuBr/PMDETA relative to the macroinitiator was important; at least 1 equiv of CuBr/PMDETA was required for complete initiation. Typical block lengths were composed of 100–150 repeat units per segment. A triblock copolymer, composed of PtBA‐b‐PMA‐b‐PS (PS = polystyrene), was also synthesized with a well‐defined composition and a narrow molecular weight dispersity. The tert‐butyl esters of PtBA‐b‐PMA and PtBA‐b‐PMA‐b‐PS were selectively cleaved to form the amphiphilic block copolymers PAA‐b‐PMA [PAA = poly(acrylic acid)] and PAA‐b‐PMA‐b‐PS, respectively, via reaction with anhydrous trifluoroacetic acid in dichloromethane at room temperature for 3 h. Characterization data are reported from analyses by gel permeation chromatography; infrared, 1H NMR, and 13C NMR spectroscopies; differential scanning calorimetry; and matrix‐assisted, laser desorption/ionization time‐of‐flight mass spectrometry. The assembly of the amphiphilic triblock copolymer PAA90b‐PMA80b‐PS98 within an aqueous solution, followed by conversion into stable complex nanostructures via crosslinking reactions between the hydrophilic PAA chains comprising the peripheral layers, produced mixtures of spherical and cylindrical topologies. The visualization and size determination of the resulting nanostructures were performed by atomic force microscopy, which revealed very interesting segregation phenomena. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4805–4820, 2000  相似文献   

17.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

18.
The micellar macro‐RAFT agent‐mediated dispersion polymerization of styrene in the methanol/water mixture is performed and synthesis of temperature‐sensitive ABC triblock copolymer nanoparticles is investigated. The thermoresponsive diblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] trithiocarbonate forms micelles in the polymerization solvent at the polymerization temperature and, therefore, the dispersion RAFT polymerization undergoes as similarly as seeded dispersion polymerization with accelerated polymerization rate. With the progress of the RAFT polymerization, the molecular weight of the synthesized triblock copolymer of poly(N,N‐dimethylacrylamide)‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine]‐b‐polystyrene linearly increases with the monomer conversion, and the PDI values of the triblock copolymers are below 1.2. The dispersion RAFT polymerization affords the in situ synthesis of the triblock copolymer nanoparticles, and the mean diameter of the triblock copolymer nanoparticles increases with the polymerization degree of the polystyrene block. The triblock copolymer nanoparticles contain a central thermoresponsive poly [N‐(4‐vinylbenzyl)‐N,N‐diethylamine] block, and the soluble‐to‐insoluble ‐‐transition temperature is dependent on the methanol content in the methanol/water mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2155–2165  相似文献   

19.
Using sequential RAFT polymerization, single monomer insertion, and “click” chemistry, a series of triblock copolymers, poly(ethylene oxide)‐b‐polystyrene‐b‐poly(ethylene oxide), PEO‐b‐PS‐b‐PEO, were synthesized, where one of the two junction points is a UV cleavable ortho‐nitrobenzyl (ONB). Ordered patterns of PEO‐b‐PS‐b‐PEO were produced by solvent vapor annealing. Upon exposure to ultraviolet (UV) light, the PEO‐b‐PS‐b‐PEO was converted into a mixture of a PEO homopolymer and a PS‐b‐PEO diblock copolymer. It was found that the microdomain spacing could be tuned by adjusting the UV exposure time, due to the change in the copolymer architecture and the swelling of the PEO microdomain by the PEO homopolymer produced. By selective area exposure of the PEO‐b‐PS‐b‐PEO thin films, the domain spacing was changed over selected locations across the film, generating patterns of different microdomain sizes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 355–361.  相似文献   

20.
Summary: Spherical micelles have been formed by mixing, in DMF, a poly(styrene)‐block‐poly(2‐vinylpyridine)‐block‐poly(ethylene oxide) (PS‐block‐P2VP‐block‐PEO) triblock copolymer with either poly(acrylic acid) (PAA) or a tapered triblock copolymer consisting of a PAA central block and PEO macromonomer‐based outer blocks. Noncovalent interactions between PAA and P2VP result in the micellar core while the outer corona contains both PS and PEO chains. Segregation of the coronal chains is observed when the tapered copolymer is used.

Inclusion of comb‐like chains with short PEO teeth in the corona triggers the nanophase segregation of PS and PEO as illustrated here (PS = polystyrene; PEO = poly(ethylene oxide)).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号