首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
We describe the preparation, characterization, and luminescence of four novel electrochromic aromatic poly(amine hydrazide)s containing main‐chain triphenylamine units with or without a para‐substituted N,N‐diphenylamino group on the pendent phenyl ring. These polymers were prepared from either 4,4′‐dicarboxy‐4″‐N,N‐diphenylaminotriphenylamine or 4,4′‐dicarboxytriphenylamine and the respective aromatic dihydrazide monomers via a direct phosphorylation polycondensation reaction. All the poly(amine hydrazide)s were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent and flexible films with good mechanical properties. These poly(amine hydrazide)s exhibited strong ultraviolet–visible absorption bands at 346–348 nm in N‐methyl‐2‐pyrrolidone (NMP) solutions. Their photoluminescence spectra in NMP solutions or as cast films showed maximum bands around 508–544 and 448–487 nm in the green and blue region for the two series of polymers. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. All obtained poly(amine hydrazide)s and poly(amine‐1,3,4‐oxadiazole)s exhibited two reversible oxidation redox couples at 0.8 and 1.24 V vs. Ag/AgCl in acetonitrile solution and revealed excellent stability of electrochromic characteristics, changing color from original pale yellow to green and then to blue at electrode potentials of 0.87 and 1.24 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3245–3256, 2005  相似文献   

2.
Four alternating arylamino‐functionalized copolymers were synthesized in a Suzuki copolymerization applying 4, 4′‐(2,7‐dibromo‐9H‐fluorene‐9,9‐diyl)dianiline, 4,4′‐(2,7‐dibromo‐9H‐fluorene‐9,9‐diyl)bis(N,N‐diphenylaniline), 4‐(3,6‐dibromo‐9H‐ carbazol‐9‐yl)aniline and 4‐(3,6‐dibromo‐9H‐carbazol‐9‐yl)‐N,N‐diphenylaniline in combination with 2,2′‐(9,9‐dioctyl‐9H‐fluorene‐2,7‐diyl)bis(1,3,2‐dioxaborinane). The resulting novel alternating copolymers were fully characterized. The copolymers revealed blue light emission and wide optical bandgaps of at least 2.93 eV for the fluorene‐based and 3.07 eV for the carbazole‐based polymers. The amino‐functions allow to tie semiconducting CdTe nanocrystals (NCs) and to synthesize a series of composites with CdTe NCs. Moreover, tuning the emission color over a wide range by tying these CdTe NCs results in a facile preparation of organic–inorganic semiconductor composites with emission colors “à la carte.” © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A series of novel aromatic polyarylates with triphenylamine units in the main chain and as the pendent group were prepared from the dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′, N′‐diphenyl‐1,4‐phenylenediamine (1), and various bisphenols. These polyarylates were amorphous and readily soluble in common organic solvents. They had excellent levels of thermal stability associated with moderately high Tg values (182–263 °C). These polymers exhibited strong UV–vis absorption bands at 357–360 nm in toluene solution and the photoluminescence spectra showed maximum bands around 493–503 nm in the green region. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyarylates exhibited two reversible oxidation redox couples in acetonitrile solution at Eonset 0.77–0.79 V and 1.12–1.14 V, respectively. The typical polymer 3b film revealed good stability of electrochromic characteristics, with color change from colorless to green and blue at applied potentials ranging from 0.00 to 1.24 V. These anodically polymeric electrochromic materials not only showed excellent reversible electrochromic stability with good green coloration efficiency (CE = 159 cm2/C) and blue coloration efficiency (CE = 154 cm2/C) but also exhibited high contrast of optical transmittance change (ΔT%), 54% in 895 nm for green color and up to 84% in 595 nm for blue color. After over 100 cyclic switches, the polymer films still exhibited excellent stability of electrochromic characteristics. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2004–2014, 2007  相似文献   

4.
Three series of aromatic polyimides with 4‐(carbazol‐9‐yl)triphenylamine moieties were prepared from the polycondensation reactions of 4,4′‐diamino‐4″‐(carbazol‐9‐yl) triphenylamine (1), 4,4′‐diamino‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)triphenylamine (t‐Bu‐1), and 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl)triphenylamine (MeO‐1), respectively, with various commercially available tetracarboxylic dianhydrides. In addition to high thermal stability and good film‐forming ability, the resulting polyimides exhibited an ambipolar electrochromic behavior. The polyimides based on t‐Bu‐1 and MeO‐1 revealed higher redox‐stability and enhanced electrochromic performance than the corresponding ones based on 1 because the active sites of their carbazole units are blocked with bulky t‐butyl or electron‐donating methoxy groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1172–1184  相似文献   

5.
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286  相似文献   

6.
New sulfonated poly(arylene ether sulfone) copolymers with high molecular weights were successfully synthesized with controlled degrees of disulfonation of up to 70 mol % via the direct copolymerization of sulfonated aromatic dihalides, aromatic dihalides, and one of four structurally distinct bisphenols. The disodium salts of the 3,3′‐disulfonated‐4,4′‐dichlorodiphenyl sulfone and 3,3′‐disulfonated‐4,4′‐difluorodiphenyl sulfone comonomers were synthesized via the sulfonation of 4,4′‐dichlorodiphenyl sulfone or 4,4′‐difluorodiphenyl sulfone with 30% fuming sulfuric acid at 110 °C. Four bisphenols (4,4′‐bisphenol A, 4,4′‐bisphenol AF, 4,4′‐biphenol, and hydroquinone) were investigated for the syntheses of novel copolymers with controlled degrees of sulfonation. The composition and incorporation of the sulfonated repeat unit into the copolymers were confirmed by 1H NMR and Fourier transform infrared spectroscopy. Solubility tests on the sulfonated copolymers confirmed that no crosslinking and probably no branching occurred during the copolymerizations. Tough, ductile films were solvent‐cast that exhibited increased water absorption with increasing degrees of sulfonation. These copolymers are promising candidates for high temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2264–2276, 2003  相似文献   

7.
Sulfonated poly(phthalazinone ether ketone) (SPPEK) copolymers and sulfonated poly(phthalazinone ether sulfone) (SPPES) copolymers containing pendant sodium sulfonate groups were prepared by direct copolymerization. The reaction of disodium 3,3′‐disulfonate‐4,4′‐difluorobenzophenone (SDFB‐Na), 4,4′‐difluorobenzophenone (DFB), and 4‐(4‐hydroxyphenyl)‐1(2H)‐phthalazinone (DHPZ) at 170 °C in N‐methyl‐2‐pyrrolidione containing anhydrous potassium carbonate gave SPPEKs. SPPESs were similarly obtained with 3,3′‐disulfonate‐4,4′‐difluorophenyl sulfone, 4‐fluorophenyl sulfone (DFS), and DHPZ as monomers. The sulfonic acid groups, being on deactivated positions of the polymer backbone, were expected to be hydrolytically more stable than postsulfonated polymers. Fourier transform infrared and 1H NMR were used to characterize the structures and degrees of sulfonation of the sulfonated polymers. Membrane films of SPPEKs with SDFB‐Na/DFB molar feed ratios of up to 60/40 and SPPESs with sulfonated 4‐fluorophenyl sulfone/DFS molar feed ratios of up to 50/50 were cast from N,N‐dimethylacetamide polymer solutions. Membrane films in acid form were then obtained by the treatment of the sodium‐form membrane films in 2 N sulfuric acid at room temperature. An increase in the number of sulfonate groups in the copolymers resulted in an increased glass‐transition temperature and enhanced membrane hydrophilicity. The sodium‐form copolymers were thermally more stable than their acid forms. The proton conductivities of the acid‐form copolymers with sulfonated monomer/unsulfonated monomer molar feed ratios of 0.5 and 0.6 were higher than 10?2 S/cm and increased with temperature; they were less temperature‐dependent than those of the postsulfonated products. SPPESH‐50 showed higher conductivity than the corresponding postsulfonated poly(phthalazinone ether sulfone). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2731–2742, 2003  相似文献   

8.
A series of organosoluble, aromatic polyamides were synthesized from a 4‐methyl‐substituted, triphenylamine‐containing, aromatic diacid monomer, 4,4′‐dicarboxy‐4″‐methyltriphenylamine, which is a blue‐light (454‐nm) emitter with a fluorescence quantum efficiency of 46%. These triphenylamine‐based, high‐performance polymers had strong fluorescence emissions in the blue region with high quantum yields up to 64% and one reversible oxidation redox couple around 1.20 V versus Ag/AgCl in acetonitrile solutions. They exhibited good thermal stability, with 10% weight loss temperatures above 480 °C under a nitrogen atmosphere and with relatively high glass‐transition temperatures (252–309 °C). All the polyamides revealed excellent stability of electrochromic characteristics, changing color from the original pale yellow to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4095–4107, 2006  相似文献   

9.
Three aromatic diamine‐based, phosphinated benzoxazines ( 7–9 ) were prepared from three typical aromatic diamines—4,4′‐diamino diphenyl methane ( 1 ), 4,4′‐diamino diphenyl sulfone ( 2 ), and 4,4′‐diamino diphenyl ether ( 3 ) by a one‐pot procedure. To clarify the reaction mechanism, a two‐pot procedure was applied, in which the reaction intermediates ( 4–6 ) were isolated for characterization. The structures of intermediates and benzoxazines were confirmed by high resolution mass, IR, and 1D and 2D‐NMR spectra. In addition to self‐polymerization, ( 7–9 ) were copolymerized with cresol novolac epoxy (CNE). After curing, the homopolymers of P( 7–9 ) are brittle while the copolymers of ( 7–9 )/CNE are tough. Dynamic mechanical analysis shows the Tgs of ( 7–9 )/CNE copolymers are 187, 190, and 171 °C, respectively. Thermal mechanical analysis shows the CTEs of ( 7–9 )/CNE copolymers are 46, 38, and 46 ppm, respectively. All the ( 7–9 )/CNE copolymers belong to an UL‐94 V‐0 grade, demonstrating good flame retardancy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
A new triphenylamine‐based diamine monomer, 4,4′‐diamino‐2″,4″‐dimethoxytriphenylamine ( 2 ), was synthesized from readily available reagents and was reacted with various aromatic dicarboxylic acids to produce a series of aromatic polyamides ( 4a–h ) containing the redox‐active 2,4‐dimethoxy‐substituted triphenylamine (dimethoxyTPA) unit. All the resulting polyamides were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. These polymers exhibited good thermal stability with glass transition temperatures of 243–289 °C and softening temperatures of 238–280 °C, 10% weight loss temperatures in excess of 470 °C in nitrogen, and char yields higher than 60% at 800 °C in nitrogen. The redox behaviors of the polymers were examined using cyclic voltammetry (CV). All these polyamides showed two reversible oxidation processes in the first CV scan. The polymers also displayed low ionization potentials as a result of their dimethoxyTPA moieties. In addition, the polymers displayed excellent stability of electrochromic characteristics with coloration change from a colorless neutral state to green and blue‐purple oxidized states. These anodically coloring polyamides showed high green coloration efficiency (CE = 329 cm2/C), high contrast of optical transmittance change (ΔT% = 84% at 829 nm), and long‐term redox reversibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3392–3401, 2010  相似文献   

11.
Multiblock copolymers 1a (Mn = 31,500–47,400) of sulfonated poly(aryl ether)s were synthesized by polycondensation of 4,4′‐difluorobenzophenone (DFBP), bis(4‐hydroxyphenyl)sulfone (BHPS), and an hydroxy‐terminated sulfonated oligomer, which was synthesized from DFBP and 2,2′,3,3′,5,5′‐hexaphenyl‐4,4′‐dihydroxybiphenyl a . The copolymerization of trimeric monomer b with DFBP and BHPS gave a series of copolymers 1b (Mn = 26,200–45,900). The copolymers were then sulfonated with chlorosulfonic acid to give ionomers 3a with hydrophilic multiblock segments and ionomers 3b with segments containing clusters of 18 sulfonic acid groups. The proton exchange membranes cast from ionomers 3a and 3b were characterized with regard to thermal stability, water uptake, proton conductivity, and morphology. Transmission electron microscopy images of 3a‐1 and 3b‐1 revealed a phase separation similar to that of Nafion that may explain their higher proton conductivities compared with randomly sulfonated copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4762–4773, 2009  相似文献   

12.
Random and block copolymers of poly (ether sulfone) (PES) and poly (ether ether sulfone) (PEES) were synthesized by the nucleophilic polycondensation of 4,4′‐dichlorodiphenyl sulfone (DCDPS) with 4,4′‐dihydroxydiphenyl sulfone (DHDPS) and hydroquinone (HQ). Chemical structures of these copolymers were characterized by 13C NMR. The monomer molar fraction, sequential distribution, and degree of randomness of the copolymers were determined through analyses of the resonances of quaternary carbons in the DCDPS unit. Experimental results show that the molar fractions of the comonomer determined by 13C NMR analyses are close to the charged values in the synthetic step. Moreover, these copolymers, which were prepared by different polymerization methods, revealed different number‐average sequential length and degree of randomness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1624–1630, 2005  相似文献   

13.
The syntheses and characterization of poly((2,6‐(4,4‐bis(4‐((2‐ethylhexyl)oxy)phenyl)‐4H‐cyclopenta[def]phenanthrene))‐co‐(2,6‐(4,4‐bis(4‐(((9‐carbazolyl)hexyl)oxy)phenyl))‐4H‐cyclopenta[def]phenanthrene)) (BCzPh‐PCPPs) and poly((2,6‐(4,4‐bis(4‐((2‐ethylhexyl)oxy)phenyl)‐4H‐cyclopenta[def]phenanthrene))‐co‐(2,6‐(4‐(4‐(((9‐carbazolyl)hexyl)oxy)phenyl)‐4‐(4‐((2‐ethylhexyl)oxy)phenyl)‐4H‐cyclopenta[def]phenanthrene))) (CzPh‐PCPPs), with carbazole unit as pendants, are presented. The carbazole moiety, which can improve the hole injection ability, was introduced as a pendant on the PCPP backbone. The devices of the polymers with the configurations of ITO/PEDOT:PSS/polymers/Ca/Al generate EL emission with maximum peaks at 400–450 nm, CIE coordinates of (x = 0.11–0.29, y = 0.11–0.33), low turn‐on voltages of 4–6 V, maximum brightness of 60–810 cd/m2, and luminescence efficiencies of 0.04–0.22 cd/A. The PL spectra of CzPh‐PCPPs films did not show any peak at around 550 nm, which corresponds to keto defect or aggregate/excimer formation, even after annealing for 30 h at 150 °C in air. Out of the series, CzPh‐PCPP1 (PCPP derivative with 10% of carbazole moiety as pendant) shows blue emission with the maximum brightness of 810 cd/m2 at 9 V, and the highest luminescence efficiency of 0.22 cd/A at 395 mA/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1327–1342, 2009  相似文献   

14.
New sulfur‐containing aromatic diamines with methyl groups at the ortho position of amino groups have been developed to prepare highly refractive and transparent aromatic polyimides (PIs) in the visible region. All aromatic PIs derived from 4,4′‐thiobis[2″‐methyl‐4″‐(p‐phenylenesulfanyl)aniline ( 2 ), 4,4′‐thiobis[2,″6″‐dimethyl‐4″‐(p‐phenylenesulfanyl)aniline ( 5 ), and aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride ( 6 ) were prepared via a two‐step polycondensation. All PIs showed good thermal properties, such as 10% weight loss temperature in the range of 497–500 °C and glass transition temperatures above 196 °C. In addition, the PIs showed good optical properties, such as optical transparency above 75% at 450 nm with a 10‐μm film thickness, high refractive indices ranging from 1.7135 to 1.7301, and small in‐plane/out‐of‐plane birefringences between 0.0066 and 0.0076. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 656–662, 2010  相似文献   

15.
The synthesis and polymerization of two new electroactive bisphenols derived from 3,4,9,10‐perylenetetracarboxylic dianhydride and 1,4,5,8‐naphthalenetetracarboxylic dianhydride with 2‐(4‐aminophenyl)‐2‐(4‐hydroxyphenyl)propane, respectively, are described. Copolymerization using the two new bisphenols and 4,4′‐isopropylidenediphenol with bis(4‐fluorophenyl)sulfone and 4,4′‐difluorobenzophenone, afforded a series of soluble electrochromic poly(aryl ether imide)s with glass‐transition temperatures ranging from 160 to 315 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3467–3475, 2000  相似文献   

16.
A novel sulfonated diamine, 3,3′‐disulfonic acid‐bis[4‐(3‐aminophenoxy)phenyl]sulfone (SA‐DADPS), was prepared from m‐aminophenol and disodium‐3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone. The conditions necessary to synthesize and purify SA‐DADPS in high yields were investigated in some detail. This disulfonated aromatic diamine, containing ether and sulfone linkages, was used to prepare N‐methyl‐2‐pyrrolidinone‐soluble, six‐membered ring polyimide copolymers containing pendent sulfonic acid groups by a catalyzed one‐step high‐temperature polycondensation in m‐cresol. These materials showed much improved hydrolytic stability with respect to phthalimides. High‐molecular‐weight film‐forming statistical copolymers with controlled degrees of disulfonation were prepared through variations in the stoichiometric ratio of disulfonated diamine (SA‐DADPS) in its soluble triethylamine salt form to several unsulfonated diamines. Three unsulfonated diamines, bis[4‐(3‐aminophenoxy)phenyl] sulfone, 4,4′‐oxydianiline, and 1,3‐phenylenediamine, were used to prepare the copolymers. The characterization of the copolymers by 1H NMR, Fourier transform infrared, ion‐exchange capacity, and thermogravimetric analysis demonstrated that SA‐DADPS was quantitatively incorporated into the copolymers. Solution‐cast films of the sulfonated copolymers were prepared and afforded tough, ductile membranes with high glass‐transition temperatures. Methods were developed to acidify the triethylammonium salt membranes into their disulfonic acid form, this being necessary for proton conduction in a fuel cell. The synthesis and characterization of these materials are described in this article. Future articles will describe the performance of these copolymers as proton‐exchange membranes in hydrogen/air and direct methanol fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 862–874, 2004  相似文献   

17.
A sulfonimide‐containing comonomer derived from 4,4′‐dichlorodiphenylsulfone was synthesized and copolymerized with 4,4′‐dichlorodiphenylsulfone and 4,4′‐biphenol to prepare sulfonimide‐containing poly(arylene ether sulfone) random copolymers (BPSIs). These copolymers showed slightly higher water uptake than disulfonated poly(arylene ether sulfone) copolymer (BPSH) controls, but their proton‐conductivity values were very comparable to those of the BPSH series with similar ion contents. The proton conductivity increased with the temperature for both systems. For samples with 30 mol % ionic groups, BPSI showed less temperature dependence in proton conductivity and slightly higher methanol permeability in comparison with BPSH. The thermal characterization of the sulfonimide copolymers showed that both the acid and salt forms were stable up to 250 °C under a nitrogen atmosphere. The results suggested that the presumed enhanced stability of the sulfonimide systems did not translate into higher protonic conductivity in liquid water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6007–6014, 2006  相似文献   

18.
A novel multifunctional poly(aryl ether) with both pendant oligoaniline and fluorene groups (PAE‐p‐OF) was synthesized by nucleophilic polycondensation and characterized by 1H NMR, Fourier‐transform infrared spectra, and gel permeation chromatography. The polymer showed excellent solubility in common organic solvents and good thermal stability. Electrochemical and photophysical properties were also investigated using cyclic voltammetry, UV–vis, and fluorescence spectroscopies. The obtained PAE‐p‐OF exhibits satisfactory electrochromic properties with high contrast value, acceptable coloration efficiency, and moderate switching times. Moreover, the fluorescence intensity of PAE‐p‐OF was modulated by controlling oxidation degree of oligoaniline moiety, due to the energy migration occurring between oligoaniline and fluorene groups. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A series of novel poly(amine–amide–imide)s (PAAIs) based on tetraphenyl‐p‐phenylenediamine (TPPA) units showing anodically/cathodically electrochromic characteristic with three primary colors [red, green, and blue (RGB)] were prepared from the direct polycondensation of the TPPA‐based diamine monomer with various aromatic bis(trimellitimide)s. These multicolored electrochromic polymers were readily soluble in polar organic solvents and showed excellent thermal stability associated with high glass‐transition temperatures (288–314 °C) and high‐char yield (higher than 60% at 800 °C in nitrogen). The PAAI films revealed electrochemical oxidation and reduction accompanied with high contrast of optical transmittance color changes from the pale yellow neutral state to the green/blue oxidized state and red reduced state, respectively. The electrochromic films had high‐coloration efficiency (CE = 178 and 242 cm2/C at the first and the second stages, respectively), low‐switching time, and good redox stability, which still retained a high electroactivity after long‐term redox cycles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
This contribution describes the polymerization of 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate by atom transfer radical polymerization (ATRP). Different catalytic systems are compared. The CuCl/4,4′‐dinonyl‐2,2′‐dipyridyl catalytic system allows a good control over the polymerization and provides polymers with a polydispersity index below 1.2. The successful polymerization of styrene from PTMPM‐Cl macroinitiators by ATRP is then demonstrated. Successful quantitative oxidation of PTMPM‐b‐PS block copolymers leads to poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate)‐b‐poly(styrene) (PTMA‐b‐PS). The cyclic voltammogram of PTMA‐b‐PS indicates a reversible redox reaction at 3.6 V (vs. Li+/Li). Such block copolymers open new opportunities for the formation of functional organic cathode materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号