首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The preparation of soluble and processable polybenzoxazine precursors capable of forming high performance networks is an important field of research with a broad spectrum of application. This study demonstrates an approach that utilizes aromatic sulfonediamine, bisphenol‐A, and formaldehyde in Mannich‐type polycondesation to prepare polybenzoxazine precursor. The structure of the oligomeric precursor (Mn = 2600) was confirmed by FTIR and 1H NMR spectral analysis. The precursor contained both sulfone and benzoxazine ring structures in the backbone. It was shown that small amount of ring‐opened phenolic groups were also present. Thermally activated self‐curing behavior of precursor in the absence of catalyst was studied by differential scanning calorimetry. Thermal properties of the cured polymers were also investigated by thermo gravimetric analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The novel benzoxazine monomers, DPA‐Bz and MDP‐Bz from renewable diphenolic acid (DPA), which mimics the structure of bisphenol A (BPA), were synthesized by traditional approaches. The structure and purity of the monomers was confirmed by FTIR, 1H NMR, and 13C NMR spectra. The thermally activated polymerization of the MDP‐Bz and DPA‐Bz afforded thermosetting polybenzoxazines with higher Tg's, 270 °C and 208 °C respectively, and higher crosslinking density compared to BPA‐Bz, due to the transesterification or esterification reactions occurred during curing process. These reactions are in accordance with the number of independent reactions determined analyzing by SVD the chemical rank of the IR spectra data matrices recorded along the homopolymerization reactions monitored at 200 °C. Spectral and concentration profiles of the active chemical species involved in these processes were obtained by MCR‐ALS. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A well‐defined multiarm star copolymer poly(styrene)‐b‐poly(ε‐caprolactone) (PSOH‐b‐PCL) with an average number of PCL arms per molecule of 60 has been prepared. 4‐Chloromethyl styrene (4‐CMS) was polymerized by means of atom transfer radical polymerization (ATRP) to obtain a hyperbranched poly(styrene) with chlorines as terminal groups. Subsequently, chlorines were substituted by reaction with diisopropanolamine (DIPA) to give the hydroxyl‐ended derivative. Finally, the hydroxyl‐ended hyperbranched poly(styrene) has been used as a macroinitiator core to polymerize ε‐caprolactone by means of cationic ring‐opening polymerization so as to obtain the star copolymer. In a second step, PSOH‐b‐PCL was used as reactive modifier of diglycidylether of bisphenol A formulations cured by 1‐methyl imidazole (1‐MI) obtaining nanostructured thermosets. The curing process was studied by dynamic scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). By rheometry, the effect of this new polymer topology on the complex viscosity (η*) of the reactive mixture and on the gelation process was also analyzed. The thermomechanical characteristics of the modified materials were determined. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Six bis‐benzoxazines based on bisphenols with different bridging groups, ? C(CH3)2? , ? CH2? , ? O? , ? CO? , ? SO2? , and single bond, were synthesized in toluene. The influence of electronic effects from bridging groups on ring‐forming reaction and thermal ring‐opening polymerization were relatively discussed in detail. Their structures were characterized by high‐performance liquid chromatography, Fourier transform infrared, 1H NMR, differential scanning calorimetry, and elementary analysis. The quantum chemistry parameters of the bisphenols and bis‐benzoxazines were calculated by molecular simulation. The results indicated that the electron‐withdrawing groups inhibited the synthetic reaction by decreasing the charge density of α‐Cs of bisphenols and increasing energy barriers of the synthetic reactions. However, the electron‐withdrawing groups promoted the thermally activated polymerization, which resulted from their activation energy and curing temperature decrease by increasing the bond length and lowering the bond energy of C? O on oxazine rings. Besides, because of stronger electron‐withdrawing sulfone group, there were more arylamine methylene Mannich bridge structure in the polybenzoxazine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A vinyl‐terminated benzoxazine (VB‐a), which could be polymerized through ring‐opening polymerization, was synthesized through the Mannich condensation of bisphenol A, formaldehyde, and allylamine. This VB‐a monomer was then subjected to blending with poly(ethylene oxide) (PEO), followed by thermal curing, to form poly(VB‐a)/PEO blends. The specific interactions, miscibility, morphology, and thermal properties of these blends were investigated with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Before curing, we found that PEO was miscible with VB‐a, as evidenced by the existence of a single composition‐dependent glass transition temperature (Tg) for each composition. The FTIR spectra revealed the presence of hydrogen‐bonding interactions between the hydroxyl groups of poly(VB‐a) and the ether groups of PEO. Indeed, the ring‐opening reaction and subsequent polymerization of the benzoxazine were facilitated significantly by the presence of PEO. After curing, DMA results indicated that the 50/50 poly(VB‐a)/PEO blend exhibited two values of Tg: one broad peak appeared in the lower temperature region, whereas the other (at ca. 327 °C, in the higher temperature region) was higher than that of pristine poly(VB‐a) (301 °C). The presence of two glass transitions in the blend suggested that this blend system was only partially miscible. Moreover, SEM micrographs indicated that the poly(VB‐a)/PEO blends were heterogeneous. The volume fraction of PEO in the blends had a strong effect on the morphology. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 644–653, 2007  相似文献   

6.
A total number of 15 different 3,4‐diarylthiophenes were synthesized, which bear a chlorine atom in ortho‐position of one of the aryl substituents. One aryl group was introduced by an oxidative cross‐coupling reaction, involving a C?H activation at C4(3) of the thiophene core. The other aryl group was in most cases introduced by a Suzuki cross‐coupling reaction, which succeeded the oxidative cross‐coupling step. Photocyclization reactions of the 3,4‐diarylthiophenes were performed in a solvent mixture of benzene and acetonitrile (50:50 v/v) at λ=254 nm and proceeded to the title compounds in yields of 60–82 %. The selectivity of the photocyclization was determined at the ortho‐chloro‐substituted aryl ring by the position of the chlorine substituent. At the other ring, a single regioisomer was observed for phenyl and para‐substituted phenyl groups. For 2‐naphthyl and ortho‐substituted phenyl rings a clear preference was observed in favor of a major regioisomer, while meta‐substitution in the phenyl ring led to a about 1:1 mixture of 5‐ and 7‐substituted phenanthro[9,10‐c]thiophenes. Mechanistically, the photocyclization is likely to occur as a photochemically allowed, conrotatory [(4n+2)π] process accompanied by elimination of HCl. It was shown for two phenanthro[9,10‐c]thiophene products that they can be readily brominated in positions C1 and C3 (74–77 %), which in turn allows for further functionalization at these positions, for example, in the course of halogen–metal exchange and polymerization reactions.  相似文献   

7.
Real‐time Fourier Transformation Infrared (FTIR) spectroscopy with a fiber optic transmission probe (TR) was used to monitor the polymerization of isobutylene (IB) initiated by α‐methylstyrene epoxide (MSE) and 1,2‐epoxi‐2,4,4‐trimethylpentane (TMPO‐1) in conjunction with TiCl4 and BCl3. In the presence of an equimolar amount of BCl3, MSE and TMPO‐1 underwent ring opening via SN1 mechanism. In contrast to TiCl4‐coinitiated reactions, no oligoether formation via SN2 mechanism was observed. TMPO‐1 with excess BCl3 initiated IB polymerization, yielding a telechelic PIB carrying α‐primary OH and ω‐tertiary Cl functionalities with 70% initiator efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3611–3618, 2008  相似文献   

8.
Two new initiators, namely, 4‐(4‐(2‐(4‐(allyloxy) phenyl)‐5‐hydroxypentane 2‐yl) phenoxy)benzaldehyde and 4‐(4‐(allyloxy) phenyl)‐4‐(4‐(4‐formylphenoxy) phenyl) pentyl 2‐bromo‐2‐methyl propanoate containing “clickable” hetero‐functionalities namely aldehyde and allyloxy were synthesized starting from commercially available 4,4′‐bis(4‐hydroxyphenyl) pentanoic acid. These initiators were utilized, respectively, for ring opening polymerization of ε‐caprolactone and atom transfer radical polymerization of methyl methacrylate. Well‐defined α‐aldehyde, α′‐allyloxy heterobifunctionalized poly(ε‐caprolactones) (Mn,GPC: 5900–29,000, PDI: 1.26–1.43) and poly(methyl methacrylate)s (Mn,GPC: 5300–28800, PDI: 1.19–1.25) were synthesized. The kinetic study of methyl methacrylate polymerization demonstrated controlled polymerization behavior. The presence of aldehyde and allyloxy functionality on polymers was confirmed by 1H NMR spectroscopy. Aldehyde‐aminooxy and thiol‐ene metal‐free double click strategy was used to demonstrate reactivity of functional groups on polymers. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
A trifunctional benzoxazine, 1,3,5‐tris(3‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazin‐6‐yl)benzene (T‐Bz) was synthesized and in an effort to reduce its curing temperature (curing maxima at 238 °C), it was mixed with various phenolic nucleophiles such as phenol (PH), p‐methoxy phenol (MPH), 2‐methyl resorcinol (MR), hydroquinone (HQ), pyrogallol (PG), 2‐naphthol (NPH), 2,7‐dihydroxy naphthalene (DHN), and 1,1'‐bi‐2‐naphthol (BINOL). The influence of these phenolic nucleophiles on ring‐opening polymerization temperature of T‐Bz was examined by DSC and FTIR analysis. T‐Bz undergoes a complete ring‐opening addition reaction in the presence of bi‐ and trifunctional phenolic nucleophiles (MR/HQ/PG/DHN) at 140 °C (heated for 3 h) and forms a networked polybenzoxazine (NPBz). The NPBzs showed a high thermal stability with Td20 of 350–465 °C and char yield of 67–78% at 500 °C; however, a diminutive weight loss (6.9–9.8%) was observed at 150–250 °C (Td5: 215–235 °C) due to degradation of phenolic end groups. This article also gives an insight on how the traces of phenolic impurities can alter the thermal properties of pure benzoxazine monomer as well as its corresponding polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2811–2819  相似文献   

10.
Substituted 7‐aryl‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy substituent at the para‐position (p‐OMe, 2a ) or an electron‐withdrawing chloro one at the para‐ (p‐Cl, 2b ), meta‐ (m‐Cl, 2c ) , and ortho‐positions (o‐Cl, 2d ) of the benzene ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative specific rotation were obtained for all of four monomers, and the polymer obtained from 2a showed smaller specific rotation value than that of polymer having no substituent (p‐H, 1 ) on the phenyl group and the polymers obtained from 2b–d showed larger ones. It was found that the kind of a substituent and its substitution position on the phenyl group affect significantly the optical activity of polymers. The largest specific rotation value of [α]435= ?153.2° was obtained in the polymerization of 2d with an ortho‐chloro substituent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 437–444  相似文献   

11.
The thermal properties of physical blends containing benzoxazine monomer and polycaprolactone (PCL) were monitored by DSC and Fourier transform infrared spectroscopy (FTIR). The ring‐opening reaction and subsequent polymerization reaction of the benzoxazine were facilitated significantly by the presence of a PCL modifier. Hydrogen‐bond formation between the hydroxyl groups of polybenzoxazine and the carbonyl groups of PCL was evident from the FTIR spectra. Only one glass‐transition temperture (Tg) value was found in the composition range investigated, and the Tg value of the resulting blend appeared to be higher in the blend with a greater amount of PCL. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 736–749, 2001  相似文献   

12.
Metal‐free controlled ring‐opening polymerization of glycidyl phenyl ether (GPE) was achieved using tetra‐n‐butylammonium fluoride (Bu4NF) as an initiator in the presence of water and ethanol as chain transfer agents (CTAs). Number‐averaged molecular weight of poly(GPE) increased with an increase of [GPE]0/([Bu4NF]0 + [CTA]0) values, showing relatively narrow molecular weight distributions. NMR spectroscopic analysis exhibited a formation of ethoxy groups as well as FCH2 at the initiating polymer chain‐end when ethanol was used as the CTA in the polymerization. These results indicate that Bu4NF acts as a catalyst as well as the initiator for this polymerization system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
3,4‐Epoxycyclohexylmethyl 3,4‐epoxycyclohexane carboxylate (ECH) was cured with different proportions of 1,6‐dioxaspiro [4,4]nonane‐2,7‐dione (s(γ‐BL)) using lanthanum triflate as a catalyst. The shrinkage undergone during curing was monitored by means of thermomechanical analysis (TMA) in isothermal experiments. Fourier transform infrared spectroscopy in attenuated‐total‐reflection mode (FTIR/ATR) was used to study the evolution of lactone, epoxide, and intermediate spiroorthoester (SOE) groups to identify the different reactions that take place during the curing process. DSC was used to study the thermal characteristics of the curing process and to assess the glass‐transition temperature (Tg) of the cured material. The dynamic mechanical properties of the cured material were determined based on the data obtained by DMTA. An increase in the proportion of s(γ‐BL) led to a decrease in the gelation time and the shrinkage after gelation. By combining the data obtained by TMA and FTIR/ATR, it was also possible to identify the reactive processes responsible for the shrinkage. It was observed that an increase in the proportion of s(γ‐BL) also increases the speed of the curing process and modifies the structure of the material, thus giving rise to more flexible materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3421–3432, 2005  相似文献   

14.
7‐(o‐Substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy‐(o‐OMe, 2a ) and methyl‐ (o‐Me, 2b ) substituents or an electron‐withdrawing cyano‐ (o‐CN, 2c ) and trifluoromethyl‐ (o‐CF3, 2d ) substituents at the ortho‐position of the aromatic ring and 7‐(m‐substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methide with an electron‐withdrawing trifluoromethyl‐ (m‐CF3, 2e ) substituent at the meta‐position of the aromatic ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative optical activity were obtained for all of five monomers, and their specific rotation values largely changed depending upon the substituents of the monomers. On the basis of the comparison of various substituents effects, it was found that the specific rotation of obtained polymers is significantly affected by the electronic effects such as inductive and resonance effects rather than the steric and electrostatic effects of the substituent. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1048–1058  相似文献   

15.
A series of substituted bisaryl phosphate compounds, (R1CH2)+ ArOP = O(O?)(OArR2R3), was analyzed and characterized by fast atom bombardment mass spectrometry. Abundant fragment ions were observed and correlated with the proposed structures. From fragmentation pattersn, ‘ortho effect’ reactions were demonstrated to have occurred when the phosphoryl oxygen reacted with the (CH2R1)+ and C?O(OCH3) substituents in the ortho position, relative to the phosphate group, and displaced the R1 and OCH3 groups, respectively, to produce phosphorus containing six-membered rings fused to the aryl moiety. When the (CH2R1)+ substituents were in the meta position relative to the phosphate group, the ‘ortho effect’ reactions were not observed. However, when the C?O(OCH3) substituent was in the meta position relative to the phosphate group, an abundant fragment ion containing a five-membered phosphate ring fused to the aryl ring was detected with the original phosphoryl oxygen ortho to both the phosphate oxygen and a formyl group, formed from the original C?O(OCH3) substituent. All other fragmentations not involving the ‘ortho effect’ reactions were nearly identical for the different structural isomers of the substituted bisaryl phosphate compounds.  相似文献   

16.
N,N‐Dimethylaminopyridine (DMAP) was used as initiator to cure mixtures of diglycidylether of bisphenol A (DGEBA) and 1,3‐dioxan‐2‐one (TMC) or 5,5‐dimethyl‐1,3‐dioxan‐2‐one (DMTMC). The curing was studied by differential scanning calorimetry (DSC) and Fourier transform infrared in the attenuated‐total‐reflection mode (FTIR/ATR). FTIR/ATR was used to monitor the competitive reactive processes and to quantify the evolution of the groups involved in the curing. We observed the formation of five‐membered cyclic carbonates and anionic carbonate groups that remain unreacted at the chain ends. The formation of these groups was explained by the attack of the anionic propagation species on the methylene carbon of the carbonate group, which leads to an alkyl‐oxygen rupture. By performing the cure in the thermobalance we could evaluate the loss of CO2 produced in the samples containing carbonates. The kinetics were studied by DSC and analyzed with isoconversional procedures. The addition of carbonates slows down the curing rate. Thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA) experiments were used to evaluate the properties of the materials obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2873–2882, 2006  相似文献   

17.
Atom transfer radical polymerizations (ATRPs) of 1‐(4‐methacryloyloxy‐benzyl)thymine (MAT) and 9‐(2‐methacryloyloxyethyl)adenine (MAA) were conducted for the synthesis of DNA‐base functionalized polymers. The association equilibrium constant Kasso between MAT and MAA and the complexation equilibrium constant Kcomp between the corresponding polymers PMAT and PMAA were determined. A zipper‐like diblock copolymer, PMAT‐b‐PMAA, was prepared by anchoring the PMAT and PMAA blocks on the ortho‐positions of a pyridine ring via a successive two‐step ATRP. Dynamic light scattering and atom force microscopy confirmed that the block copolymer had a V‐shaped configuration in dimethylsulfoxide/N,N‐dimethylformamide. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5995–6006, 2006  相似文献   

18.
Gas phase reactions of the substituted phenide ions with methyl formate have been studied. It was found that the results of these reactions depend mainly on the basicity of the phenide ion, which is related to the presence of the electron‐accepting or electron‐donating substituents in the benzene ring. It was shown that the phenide ions substituted with electron‐withdrawing groups react with methyl formate in the gas phase in a two‐step reaction. The first step that proceeds according to the typical addition–elimination mechanism results in the formation of the anion of the respective benzaldehyde derivative with the negative charge located either in the aldehyde group (acyl anion) or in the benzene ring (phenide anion) in position ortho to an aldehyde moiety. In the second step, the preliminary‐formed anion reacts with the second molecule of methyl formate yielding formally product of the second addition–elimination reaction. Theoretical calculations as well as collision induced dissociation spectra of the model compounds suggest that this reaction proceeds according to the Tishchenko reaction mechanism yielding the respective phthalide anion. According to our knowledge, this is the first example of the Tishchenko‐type reaction in the gas phase. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This study aims to investigate the curing behavior of a vinyl ester‐polyester resin suspensions containing 0.3 wt % of multiwalled carbon nanotubes with and without amine functional groups (MWCNTs and MWCNT‐NH2). For this purpose, various analytical techniques, including Differential Scanning Calorimetry (DSC), Fourier infrared spectroscopy (FTIR), Raman Spectroscopy, and Thermo Gravimetric Analyzer (TGA) were conducted. The resin suspensions with carbon nanotubes (CNTs) were prepared via 3‐roll milling technique. DSC measurements showed that resin suspensions containing CNTs exhibited higher heat of cure (Q), besides lower activation energy (Ea) when compared with neat resin. For the sake of simplicity of interpretation, FTIR investigations were performed on neat vinyl ester resin suspensions containing the same amount of CNTs as resin. As a result, the individual fractional conversion rates of styrene and vinyl ester were interestingly found to be altered dependent on MWCNTs and MWCNT‐NH2. The findings obtained from RS measurements of the cured samples are highly proportional to those obtained from FTIR measurements. TGA measurements revealed that CNT modified nanocomposites have higher activation energy of degradation (Ed) compared with the cured polymer. The findings obtained revealed that CNTs with and without amine functional groups alter overall thermal curing response of the surrounding matrix resin, which may probably impart distinctive characteristics to mechanical behavior of the corresponding nanocomposites achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1511–1522, 2009  相似文献   

20.
On treatment with the catalyst InBr3, 1,1‐difluoroallenes that bear a cyclopentene moiety and an aryl group underwent domino ring assembly in the presence or absence of N‐bromosuccinimide or N‐iodosuccinimide to afford aryne precursors such as three‐ringed ortho‐fluoro(halo)phenanthrenes, four‐ringed ortho‐fluoro(halo)tetraphenes, ortho‐fluoro(halo)chrysenes and fluoro[4]helicenes. Metalation of the aryne precursors followed by elimination of the fluoride resulted in the unprecedented systematic generation of arynes bearing π‐extended systems. Diels?Alder reactions of these arynes with isobenzofurans afforded the corresponding cycloadducts whose reductive aromatisation in an SnCl2/HBr system furnished fully aromatised benzotriphenylenes. In addition, oxidative aryl?aryl coupling (the Scholl reaction) of these benzotriphenylenes facilitated the synthesis of ‘half HBCs’ (hexabenzocoronenes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号