首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
Poly(vinylpyrrolidone)‐stabilized silver nanoparticles deposited onto strained‐silicon layers grown on graded Si1−xGex virtual substrates are utilized for selective amplification of the Si–Si vibration mode of strained silicon via surface‐enhanced Raman scattering spectroscopy. This solution‐based technique allows rapid, highly sensitive and accurate characterization of strained silicon whose Raman signal would usually be overshadowed by the underlying bulk SiGe Raman spectra. The analysis was performed on strained silicon samples of thickness 9, 17.5 and 42 nm using a 488 nm Ar+ micro‐Raman excitation source. The quantitative determination of strained‐silicon enhancement factors was also made. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We measured the Raman spectra of ZnO nanoparticles (ZnO‐NPs), as well as transition‐metal‐doped (5% Mn(II), Fe(II) or Co(II)) ZnO nanoparticles, with an average size of 9 nm. A typical Raman peak at 436 cm−1 is observed in the ZnO‐NPs, whereas Zn1−xMnxO, Zn1−xFexO and Zn1−xCoxO presented characteristic peaks at 661, 665 and 675 cm−1, respectively. These peaks can be related to the formation of Mn3O4, Fe3O4 and Co3O4 species in the doped ZnO‐NPs. Moreover, these samples were analyzed at various laser powers. Here, we observed new vibrational modes (512, 571 and 528 cm−1), which are specific to Mn, Fe and Co dopants, respectively, and ZnO‐NPs did not reveal any additional modes. The new peaks were interpreted either as disorder activated phonon modes or as local vibrations of Mn‐, Fe‐ and Co‐related complexes in ZnO. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

4.
Optical phonon modes, confined in CdSxSe1−x nanocrystal (NC) quantum dots (≈2 nm in radius) grown in a glass matrix by the melting‐nucleation method, were studied by resonant Raman scattering (RRS) spectroscopy and theoretical modeling. The formation of nanocrystalline quantum dots (QDs) is evidenced by the observation of absorption peaks and theoretically expected resonance bands in the RRS excitation spectra. This system, a ternary alloy, offers the possibility to investigate the interplay between the effects of phonon localization by disorder and phonon confinement by the NC/matrix interface. Based on the concept of propagating optical phonons, which is accepted for two‐mode pseudo‐binary alloys in their bulk form, we extended the continuous lattice dynamics model, which has successfully been used for nearly spherical NCs of binary materials, to the present case. After determining the alloy composition for NCs (that was evaluated with only 2–3% uncertainty using the bulk longitudinal optical phonon wavenumbers) and the NC size (using atomic force microscopy and optical absorption data), the experimental RRS spectra were described rather well by this theory, including the line shape and polarization dependence of the scattering intensity. Even though the presence of a compressive strain in the NCs (introduced by the matrix) masks the expected downward shift owing to the phonons' spatial quantization, the asymmetric broadening of both Raman peaks is similar to that characteristic of NCs of pure binary materials. Although with some caution, we suggest that both CdSe‐like and CdS‐like optical phonon modes indeed are propagating within the NC size unless the alloy is considerably heterogeneous. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectra of the monocytes were recorded with laser excitation at 532, 785, 830, and 244 nm. The measurements of the Raman spectra of monocytes excited with visible, near‐infrared (NIR), and ultraviolet (UV) lasers lad to the following conclusions. (1) The Raman peak pattern of the monocytes can be easily distinguished from those of HeLa and yeast cells; (2) Positions of the Raman peaks of the dried cell are in coincidence with those of the monocytes in a culture cell media. However, the relative intensities of the peaks are changed: the peak centered around 1045 cm−1 is strongly intensified. (3) Raman spectra of the dead monocytes are similar to those of living cells with only one exception: the Raman peak centered around 1004 cm−1 associated with breathing mode of phenylalanine is strongly intensified. The Raman spectra of monocytes excited with 244‐nm UV laser were measured on cells in a cell culture medium. A peak centered at 1485 cm−1 dominates the UV Raman spectra of monocytes. The ratio I1574/I1613 for monocytes is found to be around 0.71. This number reflects the ratio between proteins and DNA content inside a cell and it is found to be twice as high as that of E. coli and 5 times as high as that of gram‐positive bacteria. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We report the fabrication and characterization of highly responsive ZnMgO‐based ultraviolet (UV) photodetectors in the metal–semiconductor–metal (MSM) configuration for solar‐blind/visible‐blind optoelectronic application. MSM devices were fabricated from wurtzite Zn1–xMgx O/ZnO (x ~ 0.44) thin‐film heterostructures grown on sapphire (α‐Al2O3) substrates and w‐Zn1–xMgx O (x ~ 0.08), grown on nearly lattice‐matched lithium gallate (LiGaO2) substrates, both by radio‐frequency plasma‐assisted molecular beam epitaxy (PAMBE). Thin film properties were studied by AFM, XRD, and optical transmission spectra, while MSM device performance was analyzed by spectral photoresponse and current–voltage techniques. Under biased conditions, α‐Al2O3 grown devices exhibit peak responsivity of ~7.6 A/W at 280 nm while LiGaO2 grown samples demonstrate peak performance of ~119.3 A/W, albeit in the UV‐A regime (~324 nm). High photoconductive gains (76, 525) and spectral rejection ratios (~103, ~104) were obtained for devices grown on α‐Al2O3 and LiGaO2, respectively. Exemplary device performance was ascribed to high material quality and in the case of lattice‐matched LiGaO2 films, decreased photocarrier trapping probability, presumably due to low‐density of dislocation defects. To the best of our knowledge, these results represent the highest performing ZnO‐based photodetectors on LiGaO2 yet fabricated, and demonstrate both the feasibility and substantial enhancement of photodetector device performance via growth on lattice‐matched substrates. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
We report resonant Raman scattering of MoS2 layers comprising of single, bi, four and seven layers, showing a strong dependence on the layer thickness. Indirect band gap MoS2 in bulk becomes a direct band gap semiconductor in the monolayer form. New Raman modes are seen in the spectra of single‐ and few‐layer MoS2 samples which are absent in the bulk. The Raman mode at ~230 cm−1 appears for two, four and seven layers. This mode has been attributed to the longitudinal acoustic phonon branch at the M point (LA(M)) of the Brillouin zone. The mode at ~179 cm−1 shows asymmetric character for a few‐layer sample. The asymmetry is explained by the dispersion of the LA(M) branch along the Γ‐M direction. The most intense spectral region near 455 cm−1 shows a layer‐dependent variation of peak positions and relative intensities. The high energy region between 510 and 645 cm−1 is marked by the appearance of prominent new Raman bands, varying in intensity with layer numbers. Resonant Raman spectroscopy thus serves as a promising non invasive technique to accurately estimate the thickness of MoS2 layers down to a few atoms thick. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
High‐quality Inx Al1–xN (0.71 ≤ xIn ≤ 1.00) nanocolumns (NCs) have been grown on Si(111) substrates by rf‐plasma‐assisted molecular‐beam epitaxy (rf‐MBE). Low‐temperature photoluminescence (LT‐PL) spectra of various In‐rich InAlN NCs were measured at 4 K and single peak PL emissions were observed in the wavelength region from 0.89 µm to 1.79 µm. Temperature‐dependent PL spectra of In0.92Al0.08N NCs were studied and the so‐called “S‐shape” (decrease–increase–decrease) PL peak energy shift was observed with increasing temperature. This shift indicates the carrier localization induced by the In segregation effect and is different from the anomalous blue shift frequently observed in InN films and nanowires with high residual carrier concentra‐ tions. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We determined, for the first time, the room temperature phonon energy related to the F2g vibration mode (ωSRS(12C) ~ 1333.2 cm–1) in a mono‐crystalline single‐isotope CVD 12C‐diamond crystal by means of stimulated Raman scattering (SRS) spectroscopy. Picosecond one‐micron excitation using a Nd3+:Y3Al5O12‐laser generates a nearly two‐octave spanning SRS frequency comb (~12000 cm–1) consisting of higher‐order Stokes and anti‐Stokes components. The spacing of the spectral lines was found to differ by ΔωSRS ~ 0.9 cm–1 from the comb spacing (ωSRS(natC) ~ 1332.3 cm–1) when pumping a conventional CVD diamond crystal with a natural composition of the two stable carbon isotopes 12C (98.93%) and 13C (1.07%). (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
Raman spectroscopic investigation on weak scatterers such as metals is a challenging scientific problem. Technologically important actinide metals such as uranium and plutonium have not been investigated using Raman spectroscopy possibly due to poor signal intensities. We report the first Raman spectrum of uranium metal using a surface‐enhanced Raman scattering‐like geometry where a thin gold overlayer is deposited on uranium. Raman spectra are detected from the pits and scratches on the sample and not from the smooth polished surface. The 514.5‐ and 785‐nm laser excitations resulted in the Raman spectra of uranium metal whereas 325‐nm excitation did not give rise to such spectra. Temperature dependence of the B3g mode at 126 cm−1 is also investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium‐containing HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa‐HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa‐HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa‐HT) have been successfully synthesised and characterised by X‐ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa‐HT to 7.64 Å for the 3:1 ZnGa‐HT. The 4:1 ZnGa‐HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compounds. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium‐containing HTs. Raman bands observed at around 1050, 1060 and 1067 cm−1 are attributed to the symmetric stretching modes of the (CO32−) units. Multiple ν3 (CO32−) antisymmetric stretching modes are found between 1350 and 1520 cm−1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 and assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The carbon‐rich silicon carbide (C‐rich SixC1?x) micro‐ring channel waveguide with asymmetric core aspect is demonstrated for all‐optical cross‐wavelength pulsed return‐to‐zero on‐off keying (PRZ‐OOK) data conversion. Enhanced nonlinear optical Kerr switching enables 12‐Gbit per second data processing with optimized modulation depth. The inverse tapered waveguide at end‐face further enlarges the edge‐coupling efficiency, and the asymmetric channel waveguide distinguishes the polarization modes. To prevent data shape distortion, the bus/ring gap spacing is adjusted to control the quality factor (Q‐factor) of the micro‐ring. Designing the waveguide cross section at 500 × 350 nm2 provides the C‐rich SixC1?x channel waveguide to induce strong transverse electric mode (TE‐mode) confinement with a large Kerr nonlinearity of 2.44 × 10?12 cm2 W?1. Owing to the trade‐off between the Q‐factor and the on/off extinction ratio, the optimized bus/ring gap spacing of 1400 nm is selected to provide a coupling ratio at 5–6% for compromising the modulation depth and the switching throughput. Such a C‐rich SixC1?x micro‐ring with asymmetric channel waveguide greatly enhances the cross‐wavelength data conversion efficiency to favor its on‐chip all‐optical data processing applications for future optoelectronic interconnect circuits.  相似文献   

15.
Greatly enhanced and abnormal Raman spectra were discovered in the nominal (Ba1 − xErx)Ti1 − x/4O3 (x = 0.01) (BET) ceramic for the first time and investigated in relation to the site occupations of Er3+ ions. BaTiO3 doped with Ti‐site Er3+ mainly exhibited the common Raman phonon modes of the tetragonal BaTiO3. Er3+ ions substituted for Ba sites are responsible for the abnormal Raman spectra, but the formation of defect complexes will decrease spectral intensity. A large increase in intensity showed a hundredfold selectivity for Ba‐site Er3+ ions over Ti‐site Er3+ ions. A strong EPR signal at g = 1.974 associated with ionized Ba vacancy defects appeared in BET, and the defect chemistry study indicated that the real formula of BET is expressed by (Ba1 − xEr3x/4)(Ti1 − x/4Erx/4)O3. These abnormal Raman signals were verified to originate from a fluorescent effect corresponding to 4S3/24I15/2 transition of Ba‐site Er3+ ions. The fluorescent signals were so intense that they overwhelmed the traditional Raman spectra of BaTiO3. The significance is that the abnormal Raman spectra may act as a probe for the Ba‐site Er3+ occupation in BaTiO3 co‐doped with Er3+ and other dopants. A new broad EPR signal at g = 2.23 was discovered, which originated from Er3+ Kramers ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the N H bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide‐doped periodically poled lithium niobate crystal, with a novel variable output coupler, used as a tunable coherent light source. The OPO's signal wavelength ranges from 880 to 1040 nm and its idler wavelength from 1090 to 1350 nm. We use this OPO to demonstrate high‐resolution narrowband CARS spectroscopy on bulk polystyrene from 900 to 3600 cm−1, covering a large part of the molecular fingerprint region. Recording vibrational spectra using narrowband CARS spectroscopy has several advantages over spontaneous Raman spectroscopy, which we discuss. We isolate the resonant part of the CARS spectrum and compare it to the spontaneous Raman spectrum of polystyrene using the maximum entropy method of phase retrieval; we find them to be in extremely good agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Low refractive index polymer materials have been investigated with a view to form the back surface mirror of advanced silicon solar cells. SiOx:H or AlOy SiOx:H polymer films were spun on top of an ultra‐thin (<10 nm) atomic‐layer‐deposited (ALD) Al2O3 layer, itself deposited on low‐resistivity (1 Ω cm) p‐type crystalline silicon wafers. These double‐layer stacks were compared to both ALD Al2O3 single layers and ALD Al2O3/plasma‐enhanced chemical vapour deposited (PECVD) SiNx stacks, in terms of surface passivation, firing stability and rear‐side reflection. Very low surface recombination velocity (SRV) values approaching 3 cm/s were achieved with ALD Al2O3 layers in the 4–8 nm range. Whilst the surface passivation of the single ALD Al2O3 layer is maintained after a standard firing step typical of screen printing metallisation, a harsher firing regime revealed an enhanced thermal stability of the ALD Al2O3/SiOx:H and ALD Al2O3/AlOy SiOx:H stacks. Using simple two‐dimensional optical modelling of rear‐side reflection it is shown that the low refractive index exhibited by SiOx:H and AlOy SiOx:H results in superior optical performance as compared to PECVD SiNx, with gains in photogenerated current of ~0.125 mA/cm2 at a capping thickness of 100 nm. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The interaction of K+ with the zwitterionic form of alanine (ZAla) is investigated using Raman spectroscopy and density functional theory calculations. The Raman spectra of an aqueous solution of Ala and its mixture with KOH at different molar concentrations [ZAla + xKOH, x = 1–5 M] have been recorded in the spectral region 400–1800 cm−1. The wavenumber position of the band at ~529 cm−1 shows a red shift of 14 cm−1, while the Raman band at ~634 cm−1 shows a blue shift of 10 cm−1 with the increasing x from 1 to 5 M. The intensity ratio I634/I529 is increased with increasing x, and it could be because of the increase in concentration of the [ZAla + K+] complex in the solution. The new Raman band appeared at ~1079 cm−1 in the Raman spectra of [ZAla + xKOH, x = 1–5] complex. To determine the most probable site for the interaction of K+ with ZAla, the structures of ZAla and the [ZAla + K+] were optimized at B3LYP/6‐311++G(d,p) level of theory. The electrostatic potential calculation carried out for ZAla reveals that the maximum density of electron is lying over COO, and therefore, COO would be the most probable site for the interaction of K+ with ZAla. The theoretically calculated Raman spectra of ZAla, [ZAla + K+] and the [ZAla + K+] are in good agreement with experimentally observed Raman spectra. Thus, the Raman bands at ~529, 634, and 1079 cm−1 may be used as the Raman fingerprint for the interaction of K+ with COO of the ZAla and ZAla. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We present X‐ray diffraction and Raman spectroscopy studies of Ni‐doped ZnO (Zn1−xNixO, x = 0.0, 0.03, 0.06, and 0.10) ceramics prepared by solid‐state reaction technique. The presence of the secondary phase along with the wurtzite phase is observed in Ni‐doped ZnO samples. The E2(low) optical phonon mode is seen to be shifted to a lower wavenumber with Ni incorporation in ZnO and is explained on the basis of force‐constant variation of ZnO bond with Ni incorporation. A zone boundary phonon is observed in Ni‐doped samples at ∼130 cm−1 which is normally forbidden in the first‐order Raman scattering of ZnO. Antiferromagnetic ordering between Ni atoms via spin‐orbit mechanism at low temperatures (100 K) is held responsible for the observed zone boundary phonon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号