首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AC impedance spectroscopy was used to investigate the ionic conductivity of solution cast poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends doped with lithium perchlorate. At low PEO contents (below overlap weight fraction w*), ionic conductivities are almost low. This could be due to nearly distant PEO chains in blend, which means ion transportation cannot be performed adequately. However, at weight fractions well above w*, a significant increase in ionic conductivity was observed. This enhanced ionic conductivity mimics the PEO segmental relaxation in rigid PMMA matrix, which can be attributed to the accelerated motions of confined PEO chains in PMMA matrix. At PEO content higher than 20 wt % the conductivity measured at room temperature drops due to crystallization of PEO. However by increasing temperature to temperatures well above the melting point of PEO, a sudden increase of conductivity was observed which was attributed to phase transition from crystalline to amorphous state. The results indicate that some PEO/PMMA blends with well enough PEO content, which are structurally solid, can be considered as an interesting candidate for usage as solid‐state electrolytes in Lithium batteries. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2065–2071, 2010  相似文献   

2.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

3.
Oscillatory shear rheometry data for a miscible blend of 20 wt % poly(vinylidene fluoride) (PVDF) in poly(methyl methacrylate) (PMMA) shows breakdown of time–temperature superposition for this blend. A comparison between glass transition temperature which PMMA chains sense in the blend and effective glass transition temperature of this component indicates that, the Lodge–McLeish model can describe terminal dynamics of PMMA. In addition, terminal dynamics of PVDF chains in the blend is similar to that of its pure state in agreement with the mentioned model. At segmental level, dynamic mechanical thermal analysis of four wholly amorphous blends suggests that cooperativity of molecular motions decreases upon addition of 30 and 40 wt % PVDF to PMMA. This behavior has been confirmed via calculation of degree of fragility which presumably is attributed to strong tendency of PVDF chains to self‐association rather than inter‐association with PMMA chains according to the FTIR results. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2860–2870, 2007  相似文献   

4.
Xenon has been used as a structural probe of solid poly(ethylene oxide)/atactic poly(methyl methacrylate) (PEO/PMMA) blends of concentrations 10/90 to 75/25. 129Xe-NMR spectra at 293 K show significant changes in line width and chemical shift as the blend composition is varied. The 129Xe spectra are interpreted in terms of exchange between amorphous single-phase PEO and PMMA domains. It is shown that a simple two-site exchange model can be used to calculate spectra which fit the experimental data over the whole concentration range. Xe exchange between blend subregions is demonstrated also by a two-dimensional NMR experiment. The PEO/PMMA results are compared to previously published poly(vinylidene fluoride)/PMMA 129Xe spectra. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2681–2688, 1997  相似文献   

5.
Positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) measurements were performed in atactic poly(methylmethacrylate) and low molecular weight poly(ethylene oxide) (PEO) polymer blends, prepared by codissolution in acetonitrile, covering the full range of composition. Results from the two techniques indicate that a “window of miscibility” is attained at around 20–30 wt % of the semicrystalline PEO. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1045–1052, 2000  相似文献   

6.
Deuterium solid echo line shapes were measured on deuterated poly(ethylene oxide) (d4PEO) in a blend with protonated poly(methyl methacrylate) to characterize chain dynamics of this component in the blend. Line shapes were observed as a function of temperature from 183 to 243 K and echo delay times from 10 to 100 μs on a blend containing 20 wt % d4PEO. The line shapes and the associated relative intensities were quantitatively interpreted in terms of segmental motion and libration. The results of the interpretation are compared to an earlier study of deuterium spin‐lattice relaxation times over the temperature range of 313 to 413 K. A combined interpretation of both sets of data is developed based on bimodal distribution of correlation times that are separated by about 2 orders of magnitude in time. The faster mode is 30% of the correlation function with a stretched exponent near one while the slower mode is characterized by an exponent of 0.5. The source of the bimodal character is not revealed by the line shape and relaxation data but is consistent with the presence of two glass transition temperatures in this miscible blend and anomalous translational diffusion of diethyl ether through the blend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2433–2444, 2005  相似文献   

7.
Longitudinal relaxation of proton magnetisation was used to characterize the molecular motions of PEO chains in compatible PEO (hydrogenated)/PMMA (deuterated) blends. Both the temperature and the PEO concentration, Φ, were varied. A maximum in the spin–lattice relaxation rate was observed and its properties were analyzed as a function of Φ. For Φ ≤ 0.50, the maximum is observed below the glass transition temperature of the blend; this shows that PEO chains dispersed in a matrix of PMMA remain highly mobile on a local scale even below Tg(Φ). A frequency–temperature correspondence procedure, applied to the measurements performed at two Larmor frequencies, 32 and 60 MHz, leads to a characteristic correlation time for PEO molecular motions. Its temperature dependence obeys a WLF free volume relation above the glass transition of the blends. The PEO free volume fraction and its thermal expansion are strongly reduced by the presence of the PMMA chains. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1095–1105, 1997  相似文献   

8.
The diffusion of polymer chains in miscible polymer blends with large dynamic asymmetry—those where the two blend components display very different segmental mobility—is not well understood yet. In the extreme case of the blend system of poly(ethylene oxide) (PEO) and poly(methyl methacrylate)(PMMA), the diffusion coefficient of PEO chains in the blend can change by more than five orders of magnitude while the segmental time scale hardly changes with respect to that of pure PEO. This behavior is not observed in blend systems with small or moderate dynamic asymmetry as, for instance, polyisoprene/poly(vinyl ethylene) blends. These two very different behaviors can be understood and quantitatively explained in a unified way in the framework of a memory function formalism, which takes into account the effect of the collective dynamics on the chain dynamics of a tagged chain. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1239–1245  相似文献   

9.
The effects of supercritical carbon dioxide (SC CO2) fluids on the morphology and/or conformation of poly(ethylene oxide) (PEO) in PEO/poly(methyl methacrylate) (PMMA) blends were investigated by means of differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and Fourier transform infrared (FTIR). According to DSC data for a given blend, the melting enthalpy and, therefore, degree of crystallinity of PEO were increased, whereas the melting temperature of PEO was decreased, with SC CO2 treatment. The enhancement of PEO crystallization with SC CO2 treatment, as demonstrated by DSC data, was supported by WAXD data. According to FTIR quantitative analyses, before SC CO2 treatments, the conformation of PEO was transformed from helix to trans planar zigzag via blending with PMMA. This helix‐to‐trans transformation of PEO increased proportionally with increasing PMMA content, with around 0.7% helix‐to‐trans transformation per 1% PMMA incorporation into the blend. For a given blend upon SC CO2 treatments, the conformation of PEO was transformed from trans to helix. This trans‐to‐helix transformation of PEO decreased with increasing PMMA contents in the blends because of the presence of interactions between the two polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2479–2489, 2004  相似文献   

10.
The phase behavior of a partially miscible blend of poly(ethylene oxide) (PEO) and cellulose acetate butyrate (CAB) and the crystalline microstructure of PEO in the blend were studied with differential scanning calorimetry (DSC), optical microscopy, and synchrotron small‐angle X‐ray scattering (SAXS) methods. PEO/CAB showed a lower critical solution temperature (LCST) of 168 °C at the critical composition of PEO of 60 wt %. All blend compositions showed a single glass‐transition temperature (Tg) when they were prepared at temperatures lower than the LCST. However, with increasing CAB content, Tg of the blend changed abruptly at 70 wt % CAB; that is, a cusp existed. Below 70 wt % CAB, the change in Tg with blend composition was predicted by the Brau–Kovacs equation, whereas this change was predicted by the Fox equation at higher CAB contents. A gradual but small depression of the melting point of PEO in the blend with an increasing amount of CAB suggested that the PEO/CAB blends exhibited a weak intermolecular interaction. From DSC and SAXS experiments, it was found that amorphous CAB was incorporated into the interlamellar region of PEO for blends with less than 20 wt % CAB, whereas it was segregated to exist in the interfibrillar region in PEO for other blends with larger amounts of CAB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1673–1681, 2002  相似文献   

11.
Rigid–rigid blends made of ionomer and ionomer precursor polymer, based on poly(methyl methacrylate) (PMMA), have been investigated. Two series of blends have been prepared for studying mechanical properties. In one series, dynamic mechanical properties were determined over a wide range of temperatures. As the weight fraction of the ionomer was increased, there was a modest increase of modulus at ambient temperature and a very large increase in the rubbery modulus at elevated temperatures above the glass transition temperature of PMMA. In a second series of tests, tensile stress–strain measurements, made at an ambient temperature, were carried out over a wide range of blend compositions. For all blends tested, the mechanical properties exhibited a synergistic enhancement, i.e., average values of modulus, strength and fracture energy were all higher than expected based on the rule of mixtures. Measurements of fracture toughness also exhibited synergy, with a maximum value, higher than the value of either blend component, being attained in blends containing about 30 wt % of the PMMA ionomer. These results are interpreted in terms of a higher resistance to fracture of the more chain-entangled ionomer phase and good interfacial adhesion between the two components of the blend. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1235–1245, 1998  相似文献   

12.
To have a better insight into the effect of interaction between polymer matrix and clay on the properties of nanocomposite, poly(methyl methacrylate)/clay nanocomposites were prepared by a heterocoagulation method. Using a reactive cationic emulsifier, methacryloyloxyethyltrimethyl ammonium chloride (METAC), a strong polymer–clay interaction was obtained with the advantage of keeping a consistent polymer matrix property. X‐ray diffraction and transmission electronic microscopy indicated an exfoliated structure in nanocomposites. The glass transition temperature (Tg) of the nanocomposites was measured by DSC and DMA. The DMA results showed that with a strong interaction, PMMA–METAC nanocomposite showed a 20 °C enhancement in glass transition temperature (Tg), whereas a slight increase in Tg was observed for PMMA–cetyl trimethylammonium bromide (CTAB)/clay nanocomposite with a weak interaction. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 733–738, 2010  相似文献   

13.
A vinyl‐terminated benzoxazine (VB‐a), which could be polymerized through ring‐opening polymerization, was synthesized through the Mannich condensation of bisphenol A, formaldehyde, and allylamine. This VB‐a monomer was then subjected to blending with poly(ethylene oxide) (PEO), followed by thermal curing, to form poly(VB‐a)/PEO blends. The specific interactions, miscibility, morphology, and thermal properties of these blends were investigated with Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Before curing, we found that PEO was miscible with VB‐a, as evidenced by the existence of a single composition‐dependent glass transition temperature (Tg) for each composition. The FTIR spectra revealed the presence of hydrogen‐bonding interactions between the hydroxyl groups of poly(VB‐a) and the ether groups of PEO. Indeed, the ring‐opening reaction and subsequent polymerization of the benzoxazine were facilitated significantly by the presence of PEO. After curing, DMA results indicated that the 50/50 poly(VB‐a)/PEO blend exhibited two values of Tg: one broad peak appeared in the lower temperature region, whereas the other (at ca. 327 °C, in the higher temperature region) was higher than that of pristine poly(VB‐a) (301 °C). The presence of two glass transitions in the blend suggested that this blend system was only partially miscible. Moreover, SEM micrographs indicated that the poly(VB‐a)/PEO blends were heterogeneous. The volume fraction of PEO in the blends had a strong effect on the morphology. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 644–653, 2007  相似文献   

14.
Differential scanning calorimetry has been used to examine blends of a poly(ethylene oxide) (PEO), Mn = 300 g/mol, and a poly(methylmethacrylate) (PMMA), Mn = 10,000 g/mol, across the complete composition range. The relatively low molar mass of the PEO minimizes interference from crystallization. In the midrange of composition, ~25–70% PEO, two broad, but distinct, glass transitions are resolved. These are interpreted as distinct glass transitions of the two components, as anticipated by the self‐concentration model of Lodge and McLeish. The composition dependence of the observed transitions is well described by the self‐concentration approach, using lengthscales of approximately two‐thirds of the Kuhn length. The results are compared with previous measurements on PEO/PMMA blends and other miscible systems. The principal, general conclusion is that one should actually expect two glass transitions in a miscible polymer blend or polymer solution; the rule of thumb that two transitions indicate immiscibility is incorrect. Furthermore, attempts to rationalize two transitions on the basis of incomplete segmental mixing, or other unspecified “nanoheterogeneity,” may not be justified in many cases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 756–763, 2006  相似文献   

15.
Nanostructure, glass transition dynamics and elastic properties were studied in the 3D nanodiamond‐containing composites based on polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs), neat PU or PHEMA matrices. Nanodiamond (ND) content in the nanocomposites varied from 0.25 to 3 wt %. Combined differential scanning calorimetry/ laser‐interferometric creep rate spectroscopy/atomic force microscopy approach was utilized. A large impact of small 3D ND additives on PU‐PHEMA networks' dynamics and properties was revealed under conditions when an average inter‐particle distance L exceeds by far gyration radius Rg. The pronounced heterogeneity of glass transitions' dynamics and two opposite effects were observed. The main effect was a strong suppression of PHEMA glass transition dynamics at 90–180 °C, with the enhancement of creep resistance and threefold to sixfold increasing modulus of elasticity. The peculiarly crosslinked structure of nanocomposites, due to double covalent hybridization, resulted in low rheological percolation threshold, and a synergistic effect in dynamics was observed. Less pronounced effect of accelerating dynamics in the temperature region between β‐ and α‐transitions in PHEMA was associated with dynamics in domains with loosened molecular packing. The distinct physical limit for “anomalous” decreasing Tg is predicted in terms of the notion of the common segmental nature of α‐ and β‐relaxations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1696–1712, 2008  相似文献   

16.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   

17.
We employ atomistic computer modeling to investigate the structure and morphology of poly(ethylene oxide) (PEO) chains confined in 1-nm slit pores defined by montmorillonite silicate layers. Molecular dynamics computer simulations reveal the Li+ cations to be located in the immediate vicinity of the silicate surfaces and PEO to adopt highly amorphous conformations in a liquidlike bilayer across the slit pores. Despite the orienting influence of the parallel stacked silicate walls, PEO shows no indication of crystallinity or periodic ordering; in fact, for all temperatures simulated, it is less ordered than the most disordered bulk PEO system. These amorphous PEO film configurations are attributed to the combination of severe spatial confinement and the strong coordination of ether oxygens with the alkali cations present in the interlayer gallery. These conclusions challenge the picture traditionally proposed for intercalated PEO, but they agree with a plethora of experimental observations. Indicatively, the simulation predictions are confirmed by wide-angle neutron scattering and differential scanning calorimetry experiments on PEO/montmorillonite intercalates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3285–3298, 2003  相似文献   

18.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

19.
The tracer diffusion coefficient of unentangled poly(ethylene oxide) (PEO, M=1000 gmol) in a matrix of poly(methyl methacrylate) (PMMA, M=10 000 gmol) has been measured over a temperature range from 125 to 220 degrees C with forced Rayleigh scattering. The dynamic viscosities of blends of two different high molecular weight PEO tracers (M=440 000 and 900 000 gmol) in the same PMMA matrix were also measured at temperatures ranging from 160 to 220 degrees C; failure of time-temperature superposition was observed for these systems. The monomeric friction factors for the PEO tracers were extracted from the diffusion coefficients and the rheological relaxation times using the Rouse model. The friction factors determined by diffusion and rheology were in good agreement, even though the molecular weights of the tracers differed by about three orders of magnitude. The PEO monomeric friction factors were compared with literature data for PEO segmental relaxation times measured directly with NMR. The monomeric friction factors of the PEO tracer in the PMMA matrix were found to be from two to six orders of magnitude greater than anticipated based on direct measurements of segmental dynamics. Additionally, the PEO tracer terminal dynamics are a much stronger function of temperature than the corresponding PEO segmental dynamics. These results indicate that the fastest PEO Rouse mode, inferred from diffusion and rheology, is completely separated from the bond reorientation of PEO detected by NMR. This result is unlike other blend systems in which global and local motions have been compared.  相似文献   

20.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号