首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
Summary  This paper provides a short survey of some recent advances in the mathematical modelling of materials behaviour under creep conditions. The tertiary creep phase is accompanied by the formation of microscopic cracks on the grain boundaries in such a way so that damage accumulation occurs. The paper is divided into three parts. Firstly, the damage state in a uniaxial tension specimen is discussed and the time to rupture calculated. The second part is concerned with the creep behaviour of materials in multiaxial stress. Because of its microscopic nature, damage generally has an anisotropic character even if the material was originally isotropic. The fissure's orientation and length cause anisotropic macroscopic behaviour. Therefore, damage in an isotropic or anisotropic material, which is in a state of multiaxial stress, can only be described in a tensorial form. Thus, tensorial constitutive and evolution equations have been developed. Some examples for practical use are discussed. Finally, some own experiments are mentioned which have been carried out in order to validate the mathematical modelling. Received 16 July 1999; accepted for publication 8 March 2000  相似文献   

2.
A crystallographic creep damage constitutive model is developed for nickel-base directionally solidified superalloys. The rates of material degradation and grain boundary void growth are considered. The governing parameters are determined from the creep test data of single crystals and directionally solidified superalloys with a crystallographic orientation. A finite element program is used to analyze the creep damage behavior of nickel-base directionally solidified superalloys for different crystallographic orientations. The results depend on the number of grains modelled and compare well with the experimental data.  相似文献   

3.
The main purpose of this work is to develop a phenomenological model, which accounts for the evolution of the elastic and plastic properties of fcc polycrystals due to a crystallographic texture development and predicts the axial effects in torsion experiments. The anisotropic portion of the effective elasticity tensor is modeled by a growth law. The flow rule depends on the anisotropic part of the elasticity tensor. The normalized anisotropic part of the effective elasticity tensor is equal to the 4th-order coefficient of a tensorial Fourier expansion of the crystal orientation distribution function. Hence, the evolution of elastic and viscoplastic properties is modeled by an evolution equation for the 4th-order moment tensor of the orientation distribution function of an aggregate of cubic crystals. It is shown that the model is able to predict the plastic anisotropy that leads to the monotonic and cyclic Swift effect. The predictions are compared to those of the Taylor–Lin polycrystal model and to experimental data. In contrast to other phenomenological models proposed in the literature, the present model predicts the axial effects even if the initial state of the material is isotropic.  相似文献   

4.
The primary and secondary creep behavior of single crystals is observed by a material model using evolution equations for dislocation densities on individual slip systems. An interaction matrix defines the mutual influence of dislocation densities on different glide systems. Face-centered cubic (fcc), body-centered cubic (bcc) and hexagonal closed packed (hcp) lattice structures have been investigated. The material model is implemented in a finite element method to analyze the orientation dependent creep behavior of two-phase single crystals. Three finite element models are introduced to simulate creep of a γ′ strengthened nickel base superalloy in 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 directions. This approach allows to examine the influence of crystal slip and cuboidal microstructure on the deformation process.  相似文献   

5.
Multiaxial creep and cyclic plasticity in nickel-base superalloy C263   总被引:1,自引:0,他引:1  
Physically-based constitutive equations for uniaxial creep deformation in nickel alloy C263 [Acta Mater. 50 (2002) 2917] have been generalised for multiaxial stress states using conventional von Mises type assumptions. A range of biaxial creep tests have been carried out on nickel alloy C263 in order to investigate the stress state sensitivity of creep damage evolution. The sensitivity has been quantified in C263 and embodied within the creep constitutive equations for this material. The equations have been implemented into finite element code. The resulting computed creep behaviour for a range of stress state compares well with experimental results. Creep tests have been carried out on double notched bar specimens over a range of nominal stress. The effect of the notches is to introduce multiaxial stress states local to the notches which influences creep damage evolution. Finite element models of the double notch bar specimens have been developed and used to test the ability of the model to predict correctly, or otherwise, the creep rupture lifetimes of components in which multiaxial stress states exist. Reasonable comparisons with experimental results are achieved. The γ solvus temperature of C263 is about 925 °C, so that thermo-mechanical fatigue (TMF) loading in which the temperature exceeds the solvus leads to the dissolution of the γ precipitate, and a resulting solution treated material. The cyclic plasticity and creep behaviour of the solution treated material is quite different to that of the material with standard heat treatment. A time-independent cyclic plasticity model with kinematic and isotropic hardening has been developed for solution treated and standard heat treated nickel-base superalloy C263. It has been combined with the physically-based creep model to provide constitutive equations for TMF in C263 over the temperature range 20–950 °C, capable of predicting deformation and life in creep cavitation-dominated TMF failure.  相似文献   

6.
对建立在连续损伤力学和内变量理论基础上的两种晶体塑性损伤模型进行了比较,旨在比较两种模型在描述材料物理性能方面的适用性以及由加载而引起变形响应的不同之处.模拟结果显示,两种模型均能反映出塑性各向异性和损伤的演化;由加载而导致有限变形的响应不仅依赖于变形,而且也依赖于晶格取向;尽管两种模型在揭示单晶体的物理性能方面是不同的,但是在预测材料力学性能方面有着相同的预测趋势.  相似文献   

7.
Based on a dissipation inequality at finite strains and the effective stress concept, a Chaboche-type infinitesimal viscoplastic theory is extended to finite-strain cases coupled with anisotropic damage. The anisotropic damage is described by a rank-two symmetric tensor. The constitutive law is formulated in the corotational material coordinate system. Thus, the evolution equations of all internal variables can be expressed in terms of their material time derivatives. The numerical algorithm for implementing the material model in a finite element programme is also formulated, and several numerical examples are shown. Comparing the numerical simulations with experimental observations indicates that the present material model can describe well the primary, secondary and tertiary creep. It can also predict the anisotropic damage modes observed in experiments correctly.  相似文献   

8.
考虑损伤的内变量黏弹-黏塑性本构方程   总被引:1,自引:0,他引:1  
张泷  刘耀儒  杨强  薛利军 《力学学报》2014,46(4):572-581
基于Rice 不可逆内变量热力学框架,在约束构型空间中讨论材料的蠕变损伤问题. 通过给定具体的余能密度函数和内变量演化方程推导出考虑损伤的内变量黏弹-黏塑性本构方程. 通过模型相似材料单轴蠕变加卸载试验对一维情况下的本构方程进行参数辨识和模型验证,本构方程能很好地描述黏弹性变形和各蠕变阶段.不同的蠕变阶段具有不同的能量耗散特点. 受应力扰动后,不考虑损伤的材料系统能自发趋于热力学平衡态或稳定态. 在考虑损伤的整个蠕变过程中,材料系统先趋于平衡态再背离平衡态发展. 能量耗散率可作为材料系统热力学状态偏离平衡态的测度;能量耗散率的时间导数可用于表征系统的演化趋势;两者的域内积分值可作为结构长期稳定性的评价指标.   相似文献   

9.
This paper presents a coupled model for anisotropic damage and permeability evolution by using a micro–macro approach. The damage state is represented by a second order tensor. The evolution of damage is determined from a crack propagation criterion. The free enthalpy function of cracked material is obtained by using micromechanical considerations. It is assumed that cracks exhibit normal aperture which is coupled with the crack growth due to asperities of crack faces. By using Darcy’s law for macroscopic fluid flow and assuming laminar flow in microcracks, the overall permeability of the RVE is obtained by a volume averaging procedure taking into account crack aperture in each orientation.  相似文献   

10.
Damage evolution and energy dissipation of polymers with crazes   总被引:1,自引:0,他引:1  
Craze damage evolution and energy dissipation of amorphous polymers with crazes have been studied. A mathematical model of a single craze (SC) is proposed by adopting the fibril creep mechanism. The viscoelastic characteristics of craze fibrils are supposed to obey the Maxwell model and the craze fibrils are assumed to be compressible. The assumption of Kausch [H.H. Kausch, The role of network orientation and microstructure in fracture initiation, J. Polym. Sci. C 32 (1971) 1–44] is adopted to describe the rupture of stressed fibril bonds. The craze damage evolution and the energy dissipation equations of a SC are derived. The equations are solved numerically and the life of a SC is computed. In a significant range of far-field stress, the dissipated energy varies linearly with the stress. Using the proposed model, the uniaxial stress-strain relation of polymers with low-density craze arrays (PLDCA) is investigated. The damage evolution equation of PLDCA is derived, which shows the mathematical relation between the damage of a SC and that of PLDCA. Based on the computed results, the variation of life of PLDCA with respect to applied stress is determined. Discussions are then given to the results and some significant conclusions are drawn.  相似文献   

11.
IntroductionNickel-basehightemperatureresistancesuperalloysarsewidelyusedingasturbinesandjetengines.DireetionallysolidificationwasintroducedtoenhancecreepsbengthbyelindnahnggrainboundariesnormaltotheappliedstresswherevoidsarelikelytOoccurundercreepload.Inpractice,however,theappliedstressmaynotbeuniaxialnordirectedparalleltOthegrainboundaries.Singlecrystalswerethusdeveloped.CongregationoflowtempefAnremeltingelementsongrainboundaries,grainboundaryoxidation)etc.,areadditionalfactorsthatwoulddeg…  相似文献   

12.
The large strain deformation response of amorphous polymers results primarily from orientation of the molecular chains within the polymeric material during plastic straining. Molecular network orientation is a highly anisotropic process, thus the observed mechanical response is strongly a function of the anisotropic state of these materials. Through mechanical testing and material characterization, the nature of the evolution of molecular orientation under different conditions of state of strain is developed. The role of developing anisotropy on the mechanical response of these materials is discussed in the context of assessing the capabilities of several models to predict the state of deformation-dependent response. A three-dimensional rubber elasticity spring system that is capable of capturing the state of deformation dependence of strain hardening is used to develop a tensorial internal state variable model of the evolving anisotropic polymer response. This fully three-dimensional constitutive model is shown to be successfully predictive of the true stress vs. true strain data obtained in our isothermal uniaxial compression and plane strain compression experiments on amorphous polycarbonate (PC) and polymethylmethacrylate (PMMA) at moderate strain rates. A basis is established for providing the polymer designer with the ability to predict the flow strengths and deformation patterns of highly anisotropic materials. A companion paper by Arruda, Boyce, and Quintus-Bosz [in press] shows how the model developed herein is used to predict various anisotropic aspects of the large strain mechanical response of preoriented materials. Additional work has been done to extend the model to include the effects of strain rate and temperature in Arruda, Jayachandran, and Boyce [in press].  相似文献   

13.
A material model is proposed which describes single crystal creep behavior by evolution equations for dislocation densities on individual slip systems. An interaction matrix determines the influence from one glide system to the other. Assuming a face centered cubic crystal, allowing deformation on octahedral glide planes and cube glide planes with a Burgers vector of the type a/2〈110〉, nine independent parameters of the interaction matrix can be distinguished. A parameter check of the nine independent parameters has been carried out, showing the influence of parameters on specific orientations of the load axis. If one assumes dislocation interaction of a glide system only with itself a smooth behavior is predicted with a maximum creep rate for [001] orientation, followed by [011] and [111]. If a strong interaction is assumed, the orientation dependent creep behavior is not at all smooth, instead it shows a sharp drop in creep rates mainly in symmetric positions of the standard orientation triangle. The orientations with highest creep rates are in this case those which favor single glide. Highly symmetric orientations, such as [001], [011] and [111] have strongly decreased stationary creep rates.  相似文献   

14.
A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.  相似文献   

15.
A constitutive model for describing the creep and creep damage in initially isotropic materials with different properties in tension and compression has been applied to the modeling of creep deformation and creep damage growth in thin-walled shells of revolution with the branched meridian. The approach of establishing the basic equations for axisymmetrically loaded branched shells under creep deformation and creep damage conditions has been introduced. To solve the initial/boundary-value problem, the fourth-order Runge–Kutta–Merson’s method of time integration with the combination of the numerically stable Godunov’s method of discrete orthogonalization is used. The solution of the boundary value problem for the branched shell at each time instant is reduced to integration of the series of systems of ordinary differential equations describing the deformation of each branch and the shell with basic meridian. Some numerical examples are considered, and the processes of creep deformation and creep damage growth in a shell with non-branched meridian as well as in a branched shell are analyzed. The influence of the tension–compression asymmetry on the stress–strain state and damage evolution in a shell with non-branched meridian as well as in a branched shell with time are discussed.  相似文献   

16.
A framework for the calculation of thermally-induced plane waves in elastic-plastic single crystals of arbitrary crystallographic symmetry and orientation is presented. Plasticity is described in terms of small strain theory and the available slip-planes which can be arbitrary in number as well as in orientation. The effects of perfect-plasticity modify not only the anisotropic elastic moduli, but also the components of the Grüneisen tensor. The latter effect is a consequence of a non-spherical stress state developed in anisotropic materials during rapid energy-absorption at constant strain. Specific examples of thermally-induced plane waves are presented for both the elastic and plastic response of beryllium and graphite single-crystals.  相似文献   

17.
To avoid the dependency on origin of time, an improved damage law for creep rupture of clays is proposed considering the accumulated inelastic deviatoric strain as a measure of damage, instead of incorporating time directly. This law is incorporated into an existing anisotropic elastoplastic-viscoplastic bounding surface model for clays. The performance of the damage law was demonstrated via the simulations of creep rupture tests on undisturbed clays, and generally a good agreement between model simulations and test data was obtained. Discussions on the creep rupture parameters were followed and further improvement was suggested. At present when high quality test data for creep rupture is very limited, the proposed damage law could serve as a practical way to model creep rupture of clays.  相似文献   

18.
深部节理岩体塑性损伤耦合微面模型   总被引:2,自引:0,他引:2  
陈新  杨强 《力学学报》2008,40(5):672-683
采用微面模型理论和损伤力学方法,建立了节理岩体的弹塑性损伤耦合微面模型. 在节理岩体的微面上,将岩体视为由节理面与岩石组成的二元介质,以节理连通率作为岩体沿该方向的面积损伤变量,考虑微面法向拉应力和压应力下的不同塑性变形和损伤耦合作用机制,基于塑性理论建立了节理岩体的微面塑性损伤增量本构关系. 采用微面物理量与宏观物理量的几何约束模型,根据微面方向积分导出了节理岩体的宏观弹塑性增量本构关系. 编制了节理岩体微面模型的MARC有限元子程序,对节理岩体的单轴拉伸、压缩试验和泥浆压力作用下的井壁稳定问题进行了数值模拟研究. 数值计算结果表明,该模型能很好地揭示载荷作用下节理岩体的各向异性非弹性变形和次生节理演化过程.   相似文献   

19.
复杂应力状态镍基单晶合金低周疲劳损伤模型   总被引:1,自引:0,他引:1  
丁智平  陈吉平  尹泽勇 《应用力学学报》2005,22(2):310-314,i014
根据连续介质损伤力学理论,采用应变能释放率作为热力学广义力描述正交异性材料的疲劳损伤过程,引入取向函数考虑镍基单晶合金晶体取向对疲劳损伤的非线性影响,提出了一个各向异性疲劳损伤模型。应用多元线性回归分析方法,拟合疲劳试验数据可确定模型参数。从应变能释放率的应变空间表达式出发,导出了含有3个弹性常数的单晶合金应变三轴性因子,它既反映了材料性能的晶体取向相关性,又反映了正应力和剪应力的相互作用,并可退化为各向同性材料的应变三轴性因子。利用该模型对CMSX-2镍基单晶合金在应力控制对称循环拉-扭载荷作用下的低周疲劳寿命进行预测,预测值与试验值吻合的相当好,试验所得数据均落在2.2倍偏差的分布带内。  相似文献   

20.
Creep strength of welded joints can be estimated by continuum damage mechanics. In this case constitutive equations are required for different constituents of the welded joint: the weld metal, the heat-affected zone, and the parent material. The objective of this paper is to model the anisotropic creep behavior in a weld metal produced by multipass welding. To explain the origins of anisotropic creep, a mechanical model for a binary structure composed of fine-grained and coarse-grained constituents with different creep properties is introduced. The results illustrate the basic features of the stress redistribution and damage growth in the constituents of the weld metal and agree qualitatively with experimental observations. The structural analysis of a welded joint requires a model of creep for the weld metal under multiaxial stress states. For this purpose the engineering creep theory based on the creep potential hypothesis, the flow rule, and assumption of transverse isotropy is applied. The outcome is a coordinate-free equation for secondary creep formulated in terms of the Norton–Bailey–Odqvist creep potential and three invariants of the stress tensor. The material constants are identified according to the experimental data presented in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号