首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李喜德  黄聪  施惠基 《力学学报》2002,34(4):652-656
基于裂纹和孔洞的小尺寸特征,提出了微小缺口/孔洞的激光衍射无损探测技术,给出了解析表达式.通过这一技术,对单向拉伸试件中所含单边缺口和中心孔洞在外载作用下的演化过程进行了实时原位检测,获得了缺口/孔洞孔径随载荷的变化曲线及模拟裂纹时裂纹的张开位移、裂纹开裂长度及应力强度因子等一系列断裂参数.  相似文献   

2.
A damage-based cohesive model is developed for simulating crack growth due to fatigue loading. The cohesive model follows a linear damage-dependent traction–separation relation coupled with a damage evolution equation. The rate of damage evolution is characterized by three material parameters corresponding to common features of fatigue behavior captured by the model, namely, damage accumulation, crack retardation and stress threshold. Good agreement is obtained between finite element solutions using the model and fatigue test results for an aluminum alloy under different load ratios and for the overload effect on ductile 316 L steel.  相似文献   

3.
We study the problem of flow permeability of fracture joints using Lattice-Gas Automata simulations. We model the fracture as a rough channel bounded by a self-affine surface. Changing the surface roughness exponent, rough walls having different microstructures are obtained. Different relative roughnesses — defined as the height of the largest surface asperity divided by the mean aperture — are obtained pulling apart the two surfaces that constitute the rough walls of the channel. We calculate the macroscopic variables volume flow rate and pressure difference using microscopic balances. In the low Reynolds number regime the pressure difference and the flow rate are linearly related (the behavior is described by Darcy's law). In this regime, we study the effect of geometry on the permeability. We have found that permeability is independent of the surface roughness exponentH and it is fully determined in terms of the relative roughness and mean aperture of the fracture joint. For larger Reynolds numbers a transition to a regime in which pressure difference and flow rate are not longer linearly related is observed. This transition is observed in a domain of Reynolds numbers for which the behavior in a smooth channel remains linear. We discuss this transition.  相似文献   

4.
This paper investigates the correlation between the geometry of crack networks and the altered transport properties of cement-based porous materials. Cracks were artificially introduced into slice specimens to obtain bidimensional (2D) crack networks, and the network was characterized by the crack density, orientation, connectivity and crack opening aperture. For the permeability, the water vapor sorption isotherms were measured and an algorithm was established to solve the intrinsic permeability of cracked specimens with the help of moisture transport modeling and the data of drying tests. The electrical conductivity of cracked specimens was measured using an alternative current method. The study on the specimens with percolated cracks shows that: (1) the pertinent geometry parameters for altered transport properties include average-based crack density, crack opening and local crack connectivity; (2) the water permeability of cracked specimens is correlated to the combination \(b^{1.7}\rho f\) and electrical conductivity to \(b^{0.45}\rho f\); (3) the different exponents on the crack opening/length ratio reflect the resistance of tortuosity of crack paths to the water and current flow and this resistance is stronger for current flow.  相似文献   

5.
This study focuses on a theoretical estimation of the effective permeability of unsaturated cracked porous media. The closed-form flow solution around and in a superconductive crack, embedded in an infinite porous matrix under a far-field condition, is recalled first. Then the solution of flow around a completely unsaturated (empty) crack that is considered as an obstruction against the flow is determined. The flow solution for partially saturated crack in special configurations is obtained by superposition of the two basic solutions for superconductive and empty cracks. The contribution of an unsaturated crack, with a given saturation degree, to the effective permeability is estimated by using dilute upscaling scheme. Numerical results obtained by Finite Elements Method, are in good agreement with the theoretical results for weak crack densities but show the additional effect of cracks interaction for higher densities.  相似文献   

6.
Polymer bonded explosives (PBXs) are highly particle-filled composite materials. This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (SCB) test. The deformation and fracture process of a pre-notched SCB sample with a random speckle pattern is recorded by a charge coupled device camera. The displacement and strain fields on the observed surface during the loading process are obtained by using the digital image correlation method. The crack opening displacement is calculated from the displacement fields, the initiation and propagation of the crack are analyzed. In addition, the damage evolution and fracture mechanisms of the SCB sample are analyzed according to the strain fields and the correlation coefficient fields at different loading steps.  相似文献   

7.
Brittle materials randomly reinforced with a low volume fraction of strong, stiff and ductile fibers are considered, with specific reference to fiber-reinforced cements and concrete. Visible cracks in such materials are accompanied by a surrounding damage zone – together these constitute a very complex “crack system”. Enormous effort has been put into trying to understand the micromechanics of such systems. Almost all of these efforts do not deal with the “crack system” propagation behavior as a whole. The propagation process of such a “crack system” includes propagation of the visible crack and the growth of the damage zone. Propagation may take place by lengthening of the visible crack together with the concomitant lengthening of the surrounding damage zone, or simply by broadening of the damage zone while the visible crack length remains unchanged – or simultaneously by growth of both types. A phenomenological completely theoretical model (for an ideal material) is here proposed which can serve to examine the propagation process by means of energy principles, without recourse to the microscopic details of the process. An application of this theoretical approach is presented for the case of a damage zone evolving with a rectangular shape. This shape is chosen because it is expected that it will illustrate the nature of damage evolution and because the computational procedure necessary to follow the growth is the most straightforward.  相似文献   

8.
A self-consistent scheme is used in order to determine the permeability of a cracked porous medium. For weak values of the permeability of the uncracked porous matrix, it is found that the order of magnitude of the permeability increases beyond a critical threshold of the crack density parameter. In the framework of a micromechanical model, it is shown that both the evolution of crack opening and the crack propagation are controlled by Terzaghi's effective stress which therefore captures the coupling between permeability and mechanical loading. To cite this article: L. Dormieux, D. Kondo, C. R. Mecanique 332 (2004).  相似文献   

9.
基于局域分析的疲劳短裂纹群体演化随机模型   总被引:4,自引:0,他引:4  
洪友士  乔宇 《力学学报》1998,30(5):564-571
采用局域裂纹数密度描述金属材料中不同局部区域的疲劳短裂纹群体损伤的发展情况通过考虑在不同局域存在的材料性质的随机涨落及局部损伤对损伤总量发展的影响,建立了局域裂纹数密度演化随机方程对方程数值求解从而模拟了材料的疲劳短裂纹损伤过程结果显示出主裂纹出现的随机性,并讨论了裂纹总数与最大裂纹尺度在统计意义上的演化特征  相似文献   

10.
Based on continuum damage mechanics, for jointed rock masses, a fracture damage model is presented in this paper. First, the damage tensors are defined through the elastic-flexibility of intact rock and the equivalent elastic-damage flexibility for rock mass. Then, by the self-consistent principle of solid mechanics, the equivalent elastic-damage flexibility tensors involving the interaction between multicracks are deduced. The damage evolution law is proposed involving the mechanism of crack propagation process: frictional sliding, crack kinking, growing of branched tension cracks, interlinking of the microcracks near branched crack tips leading to the breakthrough of macro-cracks and finally the failure of rock mass. Thus the evolution of damage variables reasonably unified with the process of crack propagation is given. Finally, a plastic-brittle damage constitutive relation including brittle coupled strain rate, developed and applied to the stability analysis of complicated rock foundation of a dam in China, is described in this paper.  相似文献   

11.
This study reports an investigation on the characteristics of single-phase (brine) and two-phase (DNAPL–brine) flows in induced fractures. The fracture aperture and fluid phase distributions were determined using X-ray computer tomography. In the single-phase flow tests, the pressure gradient across the induced fractures increases linearly with increasing flow rate. However, models based on the measured aperture do not yield a consistent match with the experimental data because the effect of pressure losses due to aperture variation and undulation are not taken into account. In the two-phase flow tests, the measured phase distributions reveal that the flow pattern is dominated by a dispersed or mixed flow in which either DNAPL or brine phase is discontinuous. The channel flow pattern, in which DNAPL and brine phases are continuous in the fracture and well represented by the widely used Romm’s relative permeability relationship was not observed in this study. In contrast, a Lockhart–Martinelli-type correlation developed for gas–liquid flow in pipes was found to match the pressure gradient and phase saturation results obtained from the laboratory tests.  相似文献   

12.
Principal mechanical and chemical processes contributing to the observed spontaneous switching from net decrease in permeability to net increase in a fracture in carbonate are examined. The evolution of permeability, and related fracture aperture, is represented through a lumped parameter model. The significant processes of pressure solution beneath bridging asperities, transport of dissolved mass to the fracture void, and subsequent precipitation or dissolution within the fracture void enable the principal characteristics of observed behavior to be followed. The evolution of dissolved mass concentration in the pore fluid is followed for arbitrary applied stress, temperature, and pH conditions, with appropriate feedback to the evolution of fracture permeability. Comparisons with experimental measurements in limestone (Polak et al., 2004, Water Resour. Res. Vol. 40, W03502, doi: 10.1029/2003GL017575) show satisfactory agreement for the evolution of fracture aperture and to a lesser degree in calcium concentrations in the effluent pore fluid. Importantly, the spontaneous switching in permeability change, from aperture reducing to aperture increasing, with no change in environmental conditions, is replicated without the need for an ad hoc trigger. Although this switch is accurately replicated, the lumped parameter model is incapable of replicating the rapid observed growth in permeability that directly follows. This inability results from the assumed form of the lumped asperity model, that is incapable of representing the spatially distributed change in aperture that is seen to occur within the fracture. Despite this inconsistency, the model is shown capable of representing the principal behaviors evident in the response.  相似文献   

13.
薄壁圆柱壳流体冲击振动响应是一个复杂的流固耦合(FSI)动力学问题,对于薄壳状态监测与缺陷识别具有重要意义。基于Flügge壳体应力理论,得到壳体运动的高阶偏微分方程组(PDE),利用波传播方法获得圆柱壳系统振动响应。将壳体周围流体定义为理想声学介质,通过亥姆霍兹方程描述声压场,得到流固耦合条件下的薄壁圆柱壳受迫振动响应演变规律。针对薄壳裂纹损伤识别问题,基于断裂力学理论建立局部柔度矩阵,结合呼吸型线弹簧模型(LSM),构造裂纹附近应力及位移连续条件,获得含裂纹损伤充液圆柱壳的振动响应,进而给出一种基于振动能量流的裂纹损伤识别方法。研究结果表明:充液圆柱壳耦合系统在非线性激励下,位移响应在沿轴向、周向和径向的传播特性差异明显;裂纹的存在会导致结构局部柔度的降低和耦合系统固有频率下降;归一化输入功率流能够有效地对充液圆柱壳耦合系统进行结构裂纹损伤识别。研究结果可为充液薄壳振动响应方面的研究提供有益参考,也可为流固耦合条件下的结构裂纹损伤识别方面提供技术支持。  相似文献   

14.
The prediction of fluid-driven crack propagation in deforming porous media has achieved increasing interest in recent years, in particular with regard to the modeling of hydraulic fracturing, the so-called “fracking”. Here, the challenge is to link at least three modeling ingredients for (i) the behavior of the solid skeleton and fluid bulk phases and their interaction, (ii) the crack propagation on not a priori known paths and (iii) the extra fluid flow within developing cracks. To this end, a macroscopic framework is proposed for a continuum phase field modeling of fracture in porous media that provides a rigorous approach to a diffusive crack modeling based on the introduction of a regularized crack surface. The approach overcomes difficulties associated with the computational realization of sharp crack discontinuities, in particular when it comes to complex crack topologies including branching. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media at fracture is related to a minimization principle for the evolution problem. The existence of this minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while previous space discretizations of the saddle point principles are constrained by the LBB condition. This proposed formulation includes a generalization of crack driving forces from energetic definitions towards threshold-based criteria in terms of the effective stress related to the solid skeleton of a fluid-saturated porous medium. Furthermore, a Poiseuille-type constitutive continuum modeling of the extra fluid flow in developed cracks is suggested based on a deformation-dependent permeability, that is scaled by a characteristic length.  相似文献   

15.
岩石破裂过程THMD耦合数值模型研究   总被引:1,自引:0,他引:1  
从岩石的细观非均匀性特点出发,应用损伤力学、热力学和渗流力学理论,建立了岩体热(温度)-水(渗流)-岩(应力)-损伤耦合数值模型(THMD model),把岩石(体)THM耦合问题的研究从应力状态分析深入到损伤、破坏过程分析之中。探讨了THM耦合作用下岩石材料的细观结构损伤及其诱发的材料力学性能演化机制,并运用所提出方法计算温度-渗流-应力耦合作用下井筒近场围岩的稳定性,模拟得到的岩体破坏过程、应力分布、AE特性及渗流特性变化与现场标定结果有着一致的规律性,初步证明了该数值模型的合理性和有效性。THMD模型以简单的数值模型表征了岩石(体)中热、水、岩及损伤之间复杂的作用关系,为从细观损伤演化揭示宏观岩体温度-渗流-应力耦合破坏机制提供了一种新的数值分析方法。  相似文献   

16.
李乐 《力学学报》2018,50(5):1032-1040
采用细观力学方法对含随机裂纹网络的孔隙材料渗透性进行研究.开裂孔隙材料渗透性的影响因素包括裂纹网络的密度、连通度、裂纹的开度以及孔隙材料基体渗透性.对于不连通的裂纹网络,该文采用已有的相互作用直推法(interaction direct derivative,IDD)的理论框架,引入裂纹的密度$\rho$和裂纹开度比$b$,提出了裂纹夹杂$\!$-$\!$-$\!$基体两相复合材料渗透率的IDD理论解.对于部分连通裂纹网络,考虑局部裂纹团内部各个裂纹对有效渗透率的相互放大作用,引入裂纹网络的连通度$f$,定义与连通度相关的水平裂纹密度$\rho^{h}$,按照增量法将表征连通特征的水平裂纹嵌入有效基体中,以此方式来考虑裂纹夹杂间的相互搭接,提出了考虑裂纹连通特征的扩展IDD理论解,分别考虑了基体材料渗透率$K_{m}$、裂纹密度$\rho $、裂纹开度比$b$以及与连通度$f$相关的$\rho ^{\rm h}$.最后通过对有限区域内含随机裂纹网络孔隙材料渗透过程的有限元模拟分别验证了不连通和部分连通裂纹网络扩展IDD模型的适用性:(1)当裂纹不连通时,由于基体对流体渗透的阻隔作用,裂纹的开度对有效渗透率影响不大;(2)当裂纹部分连通时,裂纹密度分别小于1.1(无关联裂纹网络,分形维数为2.0)、1.2(关联裂纹网络,分形维数为1.75)时,扩展IDD模型能够很好地估计开裂孔隙材料的有效渗透率,但是随着裂纹进一步扩展,最大裂纹团主导作用凸显,扩展IDD模型不再适用.   相似文献   

17.
In this contribution various aspects of an anisotropic damage model coupled to plasticity are considered. The model is formulated within the thermodynamic framework and implements a strong coupling between plasticity and damage. The constitutive equations for the damaged material are written according to the principle of strain energy equivalence between the virgin material and the damaged material. The damaged material is modeled using the constitutive laws of the effective undamaged material in which the nominal stresses are replaced by the effective stresses. The model considers different interaction mechanisms between damage and plasticity defects in such a way that two-isotropic and two-kinematic hardening evolution equations are derived, one of each for the plasticity and the other for the damage. An additive decomposition of the total strain into elastic and inelastic parts is adopted in this work. The elastic part is further decomposed into two portions, one is due to the elastic distortion of the material grains and the other is due to the crack closure and void contraction. The inelastic part is also decomposed into two portions, one is due to nucleation and propagation of dislocations and the other is due to the lack of crack closure and void contraction. Uniaxial tension tests with unloadings have been used to investigate the damage growth in high strength steel. A good agreement between the experimental results and the model is obtained.  相似文献   

18.
Transport of contaminants through clays is characterized by a very low dispersivity, but depends on the sensitivity of its intrinsic permeability to the contaminant's concentration. An additional constitutive relationship for a variable intrinsic permeability is thus adopted leading to a coupled system of equations for diffusive–advective transport in multicomponent liquid. A one-dimensional transport problem is solved using finite difference and Newton–Raphson procedure for nonlinear algebraic equations. The results indicate that although diffusion contributes to an increase of transport with respect to pure advection, the flux ultimately depends on end boundary conditions for concentration which, if low, may actually slow down the evolution of concentration and thus of permeability. Indeed, the advective component of flux may still remain secondary if the end portion of the layer remains unaffected by high concentrations. With no constraints on concentration at the bottom (zero concentration gradient boundary condition) and high concentration applied at the top, a significant shortening of the breakthrough time occurs.  相似文献   

19.
20.
The solution for an elliptical cavity in an infinite two-dimensional magnetoelectroelastic medium subject to remotely uniformly applied combined mechanical–electric–magnetic loadings is obtained by using the Stroh formalism and the exact boundary conditions along the surface of the cavity. By letting the minor-axis of the cavity to zero the solution for a crack is deduced. A self-consistent method is proposed to calculate the real crack opening under the combined mechanical–electric–magnetic loadings. The method requires that the crack opening is the minor-axis of the elliptical opening profile. Beside the real crack solution, four different extreme models, i.e., the impermeable crack, permeable crack, electrically impermeable and magnetically permeable crack and electrically permeable and magnetically impermeable crack, are discussed. An expression of the strain energy density factor is derived. Numerical results of the strain energy density at the crack tip are given for a BaTiO3–CoFe2O4 composite with the piezoelectric BaTiO3 material being the inclusion and the magnetostrictive CoFe2O4 material being the matrix. The effects of the proportion of the two phases, permeability of the crack to electric and magnetic fields, the electric and magnetic loadings on the strain energy density factor are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号