首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Adsorption of 4,4′‐thiobisbenzenethiol (4,4′‐TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface‐enhanced Raman scattering (SERS) for the first time, which indicates that 4,4′‐TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H‐atoms of the S H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4′‐TBBT in the two systems. It is inferred from the SERS signal that the two aromatic rings in 4,4′‐TBBT molecule are parallel to the colloidal silver surface as seen from the disappearance of νC H band (3054 cm−1), which is a vibrational mode to be used to determine the orientation of a molecule on metals according to the surface selection rule, while on the roughened silver electrode surface they are tilted to the surface as seen from the enhanced signal of νC H. The orientation of the C‐S bond is tilted with respect to the silver surface in both cases as inferred from the strong enhancement of the νC S. SERS spectra of 4,4′‐TBBT on the roughened silver electrode with different applied potentials reveal that the enhancement of 4,4′‐TBBT on the roughened silver electrode surface may be related to the chemical mechanism (CM). More importantly, the adsorption of 4,4′‐TBBT on the silver electrode is expected to be useful to covalently adsorb metal nanoparticles through the free S H bond to form two‐ or three‐ dimensional nanostructures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A comparative study of molecular structures of five L ‐proline (L ‐Pro) phosphonodipeptides: L ‐Pro‐NH‐C(Me,Me)‐PO3H2 (P1), L ‐Pro‐NH‐C(Me,iPr)‐PO3H2 (P2), L ‐Pro‐L ‐NH‐CH(iBu)‐PO3H2 (P3), L ‐Pro‐L ‐NH‐CH(PA)‐PO3H2 (P4) and L ‐Pro‐L ‐NH‐CH(BA)‐PO3H2 (P5) has been carried out using Raman and absorption infrared techniques of molecular spectroscopy. The interpretation of the obtained spectra has been supported by density functional theory calculations (DFT) at the B3LYP; 6–31 + + G** level using Gaussian 2003 software. The surface‐enhanced Raman scattering (SERS) on Ag‐sol in aqueous solutions of these phosphonopeptides has also been investigated. The surface geometry of these molecules on a silver colloidal surface has been determined by observing the position and relative intensity changes of the Pro ring, amide, phosphonate and so‐called spacer (−R) groups vibrations of the enhanced bands in their SERS spectra. Results show that P4 and P5 adsorb onto the silver as anionic molecules mainly via the amide bond (∼1630, ∼1533, ∼1248, ∼800 and ∼565 cm−1), Pro ring (∼956, ∼907 and ∼876 cm−1) and carboxylate group (∼1395 and ∼909 cm−1). Coadsorption of the imine nitrogen atom and PO group with the silver surface, possibly by formation of a weaker interaction with the metal, is also suggested by the enhancement of the bands at 1158 and 1248 cm−1. P1, P2 and P3 show two orientations of their main chain on the silver surface resulting from different interactions of the  C CH3,  NH and  CONH fragments with this surface. Bonding to the Ag surface occurs mainly through the imino atom (1166 cm−1) for P2, while for P1 and P3 it occurs via the methyl group(s) (1194–1208 cm−1). The amide group functionality (CONH) is practically not involved in the adsorption process for P1 and P2, whereas the Cs P bonds do assist in the adsorption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The surface‐enhanced Raman scattering (SERS) of sodium alginates and their hetero‐ and homopolymeric fractions obtained from four seaweeds of the Chilean coast was studied. Alginic acid is a copolymer of β‐D ‐mannuronic acid (M) and α‐L guluronic acid (G), linked 1 → 4, forming two homopolymeric fractions (MM and GG) and a heteropolymeric fraction (MG). The SERS spectra were registered on silver colloid with the 632.8 nm line of a He Ne laser. The SERS spectra of sodium alginate and the polyguluronate fraction present various carboxylate bands which are probably due to the coexistence of different molecular conformations. SERS allows to differentiate the hetero‐ and homopolymeric fractions of alginic acid by characteristic bands. In the fingerprint region, all the poly‐D ‐mannuronate samples present a band around 946 cm−1 assigned to C O stretching, and C C H and C O H deformation vibrations, a band at 863 cm−1 assigned to deformation vibration of β‐C1 H group, and one at 799–788 cm−1 due to the contributions of various vibration modes. Poly‐L ‐guluronate spectra show three characteristic bands, at 928–913 cm−1 assigned to symmetric stretching vibration of C O C group, at 890–889 cm−1 due to C C H, skeletal C C, and C O vibrations, and at 797 cm−1 assigned to α C1 H deformation vibration. The heteropolymeric fractions present two characteristic bands in the region with the more important one being an intense band at 730 cm−1 due to ring breathing vibration mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This work used infrared absorption and Raman spectroscopy to determine the structure of seven modified fragments (residues 6–14 of the polypeptide chain) of bombesin (BN6–14). The peptides studied are cyclo[D ‐Phe6, His7, Leu14]BN6–14, [D ‐Phe6, Leu‐NHEt13, des‐Met14]BN6–14, [D ‐Phe6, Leu13‐®‐p‐chloro‐Phe14]BN6–14, [D ‐Phe6, β‐Ala11, Phe13, Nle14]BN6–14, [D ‐Tyr6, β‐Ala11, Phe13, Nle14]BN6–14, [D ‐Tyr6, β‐Phe11, Phe13, Nle14OH]BN6–14 and [D ‐Cys6, Asn7, D ‐Ala11, Cys14]BN6–14. These peptides are potent bombesin agonists useful in the treatment of tumors. Surface‐enhanced Raman scattering (SERS) spectroscopy was also used to examine the behavior of these molecules on an electrochemically roughened silver surface. The SERS spectra reveal that substituting native amino acids in these molecules with synthetic ones changes their adsorption state slightly on an electrochemically roughened surface of silver. The peptides [D ‐Tyr6, β‐Ala11, Phe13, Nle14]BN6–14 and [D ‐Tyr6, β‐Phe11, Phe13, Nle14OH]BN6–14 tend to adsorb strongly on this surface via C fragment (∼1400 cm−1). The observed medium enhancement of the Trp8 residue and amide bond Raman signals indicate further interactions between these fragments and the surface. [D ‐Phe6, Leu‐NHEt13, des‐Met14]BN6–14 and [D ‐Cys6, Asn7, D ‐Ala11, Cys14]BN6–14 are shown to be coordinated to the silver through  CONH , CO, and the indole ring. The strongest SERS bands (∼1506, ∼1275, ∼1149, and ∼1007 cm−1) of [D ‐Phe6, Leu13‐®‐p‐chloro‐Phe14]BN6–14 and [D ‐Phe6, β‐Ala11, Phe13, Nle14]BN6–14 suggest that these two peptides bind to the silver via Trp8 and  CONH . In the case of cyclo[D ‐Phe6, His7, Leu14]BN6–14, the formation of a peptide/Ag complex is confirmed by the strong SERS bands involving Trp8 and  CONH vibrations, which are accompanied by a SERS signal due to the CO vibrations. For these analogs, the relative potency for inhibition of binding of 125I‐[Tyr4]BN to rat pancreas acini cells was correlated with the behavior of the amide bond on the silver surface, while the contribution of the structural components to the ability to interact with the rGRP‐R was correlated with the SERS patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The strength and geometry of adsorption of substituted propenoic acids on silver surface were studied by means of surface enhanced Raman spectroscopy (SERS) using silver sol. Based on their SERS behavior, two classes of phenylpropenoic acids studied were distinguished. The first class of propenoic acids (atropic acid, (E)‐2,3‐diphenylpropenoic acid, (E)‐2‐(2‐methoxyphenyl)‐3‐phenylpropenoic acid, (E)‐2,3‐di‐(4‐methoxyphenyl)phenylpropenoic acid and (E)‐2‐(2‐methoxyphenyl)‐3‐(4‐fluorophenyl)propenoic acid) has shown strong charge transfer (CT) effect. We suggest bidentate carboxyl bonded species based on the SERS enhanced bands of νCOO around 1394 cm−1 and νC―C of the ―C―COO moiety at 951 cm−1. In these series the plane of the α‐phenyl group (γCH out‐of‐plane vibrations at 850–700 cm−1) is almost parallel to the silver surface, while the β‐phenyl group is in tilted position depending on the type and the position of substituent(s) showing strong SERS enhanced bands of νCC + βCH (in‐plane mode) at 1075 cm−1, νCC (ring breathing mode, in‐plane) at 1000 cm−1 and γCCC (out‐of‐plane mode) around 401 cm−1. The other class of propenoic acids (cinnamic acid, (E)‐2‐phenyl‐3‐(4‐methoxyphenyl)propenoic acid) has shown weak electromagnetic (EM) enhancement (CC bands is enhanced in cinnamic acid). In this case no significant carboxyl enhancement was observed, so we suggest that adsorbed species lie parallel to the surface. The two types of adsorption can be related to the dissociation ability of the carboxylic group. In the first case the carboxylic H dissociates, while in the second case it does not, as indicated also by the characteristic νCO band at 1686 cm−1 in the FT‐Raman spectra of methanolic solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The adsorption modes of 4‐amino‐3‐hydrazino‐5‐mercapto‐1,2,4‐trizole (purpald) self‐assembled monolayers (SAMs) formed on SERS‐active silver and gold electrodes were comparatively studied using surface‐enhanced Raman scattering (SERS), and the self‐assembling procedures were investigated by the Raman mapping technique. Purpald SAMs adopted a titled orientation with S, N2 atoms anchoring to the silver electrode and the  N7H2 close to the surface, whereas purpald stood up on the gold electrode through S, N5 atoms and with  N8H2 adjacent to the surface. The density functional theory (DFT) at the level of B3LYP was performed to help explain their different adsorption behaviors on the silver and gold electrodes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
We report the observation of large surface‐enhanced Raman scattering (SERS) (106) for 4‐tert‐butylpyridine molecules adsorbed on a silver electrode surface in an electrochemical cell with electrode potential set at − 0.5 V. A decrease in electrode potential to − 0.3 V was accompanied by a decrease in relative intensities of the vibrational modes. However, there were no changes in vibrational wavenumbers. Comparison of both normal solution Raman and SERS spectra shows very large enhancement of the intensities of a1, a2, and b2 modes at laser excitation of 488 nm. Enhancement of the non‐totally symmetric modes indicates the presence of charge transfer as a contributor to the enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In order to resolve the dispute on the origin of the b2‐type bands in the surface‐enhanced Raman scattering (SERS) of 4‐aminobenzenethiol (4‐ABT), we have measured its SERS spectra under a variety of conditions, including variable temperature and rotation, electrochemistry, and pH, as well as in the presence of a reducing agent. For comparison, the SERS spectra of 4‐nitrobenzenethiol (4‐NBT) and methyl orange (MO), a prototype azo compound, were also measured. First, we found that 4‐ABT on Ag is not subjected to photoreaction, although 4‐NBT is highly photoreactive on a silver surface. In the electrochemical environment, b2‐type bands of 4‐ABT lost their intensity at very negative potentials, but the intensity recovered immediately upon raising the potential. In addition, b2‐type bands were observed under rotation even after lowering the potential. The disappearance and reappearance of the b2‐type bands could also be observed by bringing the sample of 4‐ABT on Ag into contact consecutively with a borohydride solution and water. This is because the surface potential of Ag is lowered by contact with a borohydride solution. Besides, we found that not only the normal Raman but also the SERS spectral features of 4‐ABT are hardly affected by pH variation, while the spectral features of MO are greatly affected, especially in the region of the NN stretching vibration, suggesting that the possibility of a photoconversion of 4‐ABT to an azo compound is low. Altogether, the b2‐type bands were attributed to 4‐ABT, appearing in conjunction with the chemical enhancement mechanism in SERS. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Monolayers of sulfanilamide on metallic surface can serve as an ideal model for understanding the interaction mechanism between the metal and the sulfanilamide molecule. In the present paper, the surface‐enhanced Raman scattering (SERS) technique was employed to obtain the SERS spectra of sulfanilamide monolayers formed on the silver surface under different pH values. Assignments of the spectra were carried out with the aid of density functional theory (DFT) calculations (BLYP/6‐311G). It can be found that the adsorption function of sulfanilamide on the silver surface was influenced by the pH value. The fully protonated sulfanilamide molecule adsorbed on the silver surface through N13H2 group and the benzene ring anchored in a relatively perpendicular manner leading to N7H2 and S10O2 groups near the surface, while the completely deprotonated sulfanilamide molecule attached on the silver surface via N7H2 and the benzene ring was perpendicular to, and the N13H2 and S10O2 groups were far from the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Raman spectra of 3CHBT in unoriented form were recorded at 14 different temperature measurements in the range 25–55 °C, which covers the crystal → nematic (N) phase transition, and the Raman signatures of the phase transition were identified. The wavenumber shifts and linewidth changes of Raman marker bands with varying temperature were determined. The assignments of important vibrational modes of 3CHBT were also made using the experimentally observed Raman and infrared spectra, calculated wavenumbers, and potential energy distribution. The DFT calculations using the B3LYP method employing 6‐31G functional were performed for geometry optimization and vibrational spectra of monomer and dimer of 3CHBT. The analysis of the vibrational bands, especially the variation of their peak position as a function of temperature in two different spectral regions, 1150–1275 cm−1 and 1950–2300 cm−1, is discussed in detail. Both the linewidth and peak position of the ( C H ) in‐plane bending and ν(NCS) modes, which give Raman signatures of the crystal → N phase transition, are discussed in detail. The molecular dynamics of this transition has also been discussed. We propose the co‐existence of two types of dimers, one in parallel and the other in antiparallel arrangement, while going to the nematic phase. The structure of the nematic phase in bulk has also been proposed in terms of these dimers. The red shift of the ν(NCS) band and blue shift of almost all other ring modes show increased intermolecular interaction between the aromatic rings and decreased intermolecular interaction between two  NCS groups in the nematic phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
IR, Raman and surface‐enhanced Raman scattering (SERS) spectra of 5‐sulphosalicylic acid were recorded and analysed. The vibrational wavenumbers were computed by density functional theoretical (DFT) method using B3LYP/6–31G* basis. The bands due to the stretching modes CO, C S and SO2 are intense in the SERS spectrum. The C H stretching mode also appears in the SERS spectrum. The molecule is found to adsorb through both the carboxyl and sulphonyl groups. A possible tilted orientation of the molecule is suggested. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Fourier‐transform Raman and infrared spectra were acquired for four arginine vasopressin (AVP) analogs containing L ‐diphenylalanine (Dpa): [Dpa2]AVP, [Cpa1,Dpa2]AVP, [Dpa3]AVP, and [Cpa1,Dpa3]AVP (where Cpa denotes 1‐mercaptocyclohexaneacetic acid). We compared and analyzed these spectra. In addition, the Raman spectra were compared to the corresponding surface‐enhanced Raman scattering spectra recorded in an aqueous silver colloidal dispersion. Silver colloidal dispersions prepared by the simple borohydride reduction of silver nitrate were used as substrates. The geometry of these molecules etched on the silver surface was deduced from the observed changes in the intensity enhancement, breadth, and shift in wavenumber of the Raman bands in the spectra of the bound versus free species. Based on the obtained data, adsorption mechanisms were proposed for each case, and the suggested adsorbate structures were compared. All the molecules were thought to adsorb onto a silver surface via a phenyl ring, free electron pairs on the sulfur atom, and CO and  CONH‐bonds. However, the orientation of these fragments on the colloidal silver surface and the strength of the interactions with this surface are different. For [Dpa3]AVP and [Cpa1,Dpa3]AVP, a strong interaction among the—CCN‐peptide fragment and the colloidal silver surface occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Raman spectra of the Cl3CCHO/CCl4 and Cl3CCHO/C6D12 binary systems were recorded as a function of the mole fraction. Features originating from self‐aggregates of chloral (trichloroethanal, trichloroacetaldehyde—TCAA) molecules were detected in different spectral regions. The most pronounced changes were observed in the vicinity of the ν(CO) and ν(C H) stretching vibration bands. Using two‐dimensional correlation spectroscopy (2D‐COS), evolving‐factor analysis (EFA) and multivariate curve resolution (MCR), dimer bands were identified, and their positions were determined. The ν(C H) stretching vibration band in dimers was blue‐shifted by nearly 18 cm−1, whereas the ν(CO) dimer band was red‐shifted by more than 5 cm−1. For these bands, the observed shifts were accompanied by an almost twofold change in the bandwidth, from approximately 19 and 6 cm−1 for dilute solutions (x = 0.05) to 36.6 and 11.5 cm−1, respectively, in pure TCAA. The formation of dimers was confirmed by multivariate analysis of the Raman spectra of chloral recorded as a function of temperature. Analogous analysis of dichloroacetyl chloride (DCAC) spectra gave an 8.9 cm−1 blue shift for the ν(C H) vibration band and − 5.5/− 10.1 cm−1 shifts for the ν(CO) stretching vibrations of the two conformers present. To facilitate the interpretation of experimental findings, the optimized geometries and vibrational wavenumbers of the Cl3CCHO/HCl2CCClO molecules and (Cl3CCHO)2/(HCl2CCClO)2 dimers were calculated at the B3LYP/6‐311 + + G(3df,3pd) level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The adsorption of trimethyl phosphine (TMP) on colloidal silver has been investigated by means of surface‐enhanced Raman scattering spectroscopy (SERS). On the basis of surface selection rules, it is deduced from the SERS results that TMP adsorbs on silver surface via its P atom. The electron donor effect of TMP can be sensitively probed by the coadsorbed SCN. The Raman wavenumber of νCN of the adsorbed SCN shifts to lower wavenumbers when TMP is coadsorbed with SCN and the red shift of C≡N stretching wavenumber is found to increase with increasing surface coverage of TMP. This could be explained in terms of the electron donor effect of TMP. Density functional theory (DFT) calculations further confirm the experimental results that the charge transfer is from TMP to silver surface rather than reversely. Natural bond orbital (NBO) analysis indicates that the red shift of C≡N stretching mode is due the increase of electronic populations of π* orbital of C≡N bond induced by coadsorbed TMP, consequently the C≡N bond is weakened, and the νCN shifts to lower wavenumbers. An NBO analysis also indicates that the conjugated effect between S atom and C≡N bond could easily make the charge transfer from silver surface to C≡N bond. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
We have investigated the photochemical characteristics of silver 4‐nitrobenzenethiolate (Ag‐4NBT) by means of Raman spectroscopy. When Ag‐4NBT is irradiated with an argon ion laser at 514.5 nm, its Raman spectrum changes over time, resulting in the production of 4NBT‐capped silver nanoparticles. The surface‐enhanced Raman scattering (SERS) spectrum of 4NBT adsorbed on those Ag nanoparticles is subsequently converted to that of 4‐aminobenzenethiol (4ABT). These surface‐induced photoreduction characteristics were investigated by monitoring the growth of Raman peaks of 4ABT as a function of the laser exposure time. Water vapor or ambient conditions were more effective than vacuum conditions for the photoreduction of 4NBT to 4ABT. Nonetheless, the occurrence of photolysis even under vacuum conditions suggests that the benzene ring hydrogen atoms might be the H‐atom source of the nitro‐to‐amine group conversion although in ambient conditions water or solvent molecules trapped inside the Ag‐4NBT should be the primary H‐atom source and facilitate the transfer of electrons, as well as the diffusion of Ag atoms to form highly SERS‐active nanoaggregates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Surface‐enhanced Raman scattering (SERS) spectra of hydrogenated amorphous carbon (a C:H) deposited on silver substrates have been recorded with a confocal Raman microscope. When scattered radiation is collected during a short time from an area of a few square micrometres, the subsequently measured SERS spectra often exhibit strong temporal changes (fluctuations). In this paper we present examples of spectra for which the intensity maxima of the fluctuating narrow Raman bands are significantly higher than that of the background (the background is usually dominated by two broad Raman bands centred at about 1350 and 1590 cm−1). In a series of successively measured spectra, one can find spectra with noticeably different total integral intensity. This suggests that the results of averaging the spectra revealing strong and weak fluctuations may be different (at least in intensity). The influence of some electrolytes on the SERS spectral fluctuations is also analysed. Our experiments revealed that the efficiencies of quenching of the SERS spectral fluctuations by various electrolytes are significantly different. We suggest that only anions directly interacting with the metal surface quench strong SERS fluctuations, and that the large differences between chloride and perchloride solutions are caused by differences in the strength of interaction of Cl and ClO4 anions with the silver surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The Raman and surface‐enhanced Raman spectra (SERS) of flavone and three of its hydroxy derivatives, 3‐hydroxyflavone (3‐HF) and 5‐hydroxyflavone (5‐HF) and quercetin (3,5,7,3′,4′ pentahydroxyflavone) have been obtained. The normal Raman (NR) spectra were taken in the powder form. The SERS spectra were obtained both on Ag colloids and Ag electrode substrates. Assignments of the spectrally observed normal modes were aided by density functional theory (DFT) calculations using the B3LYP functional and the 6‐31 + G* basis, a split valence polarized basis set with diffuse functions. Excellent fits were obtained for the observed spectra with little or no scaling. The most intense lines of the NR spectra are those in the CO stretching region (near 1600 cm−1). These lines are often weakened by proximity to the surface, while other lines at lower wavenumbers, due to in‐plane ring stretches, tend to be strongly enhanced. The SERS spectrum of flavone is weak both on the colloid and on the electrode, indicating weak attachment to the surface. In contrast, the SERS spectra of the hydroxy derivatives of flavone are intense, indicating the assistance of OH groups in attachment to the surface. The spectra of the various species are compared, and a case study of application to detection of a textile dye (Persian berries), which contains quercetin, is presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号