首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Supercritical carbon dioxide (ScCO2) was used as a physical foaming agent to prepare poly(vinylidene f luoride)/poly(N-vinyl pyrrolidone) (PVDF/PVP) microstructure material. The effects of foaming conditions including saturation pressure, foaming temperature and foaming time on PVDF/PVP foams morphology, thermal and electrical behavior were systematically investigated by scanning electron microscope, differential scanning calorimeter and broadband dielectric spectrometer. Small cell and low cell density were achieved at low pressure of 12 MPa, as increasing saturation pressure, the average cell size increased first, and then decreased. The competition between the cell growth and cell nucleation played an important role in average cell size, which was directly related to ScCO2 processing conditions. With increasing foaming temperature, cell size was increased and cell density was decreased, in a nearly linear manner. The variation of foaming time was considered to be closely related to the time for cells to grow. Thus, the results revealed that the average cell size enhanced with extending foaming time. The thermal properties of PVDF/PVP composites are slightly inf luenced by foaming parameters, and the dielectric constant of PVDF/PVP composite foams decreased with increasing volume expansion ratio.  相似文献   

2.
By using supercritical carbon dioxide (sc‐CO2) as the physical foaming agent, microcellular foaming was carried out in a batch process from a wide range of immiscible polypropylene/polystyrene (PP/PS) blends with 10–70 wt% PS. The blends were prepared via melt processing in a twin‐screw extruder. The cell structure, cell size, and cell density of foamed PP/PS blends were investigated and explained by combining the blend phase morphology and morphological parameters with the foaming principle. It was demonstrated that all PP/PS blends exhibit much dramatically improved foamability than the PP, and significantly decreased cell size and obviously increased cell density than the PS. Moreover, the cell structure can be tunable via changing the blend composition. Foamed PP/PS blends with up to 30 wt% PS exhibit a closed‐cell structure. Among them, foamed PP/PS 90:10 and 80:20 blends have very small mean cell diameter (0.4 and 0.7 µm) and high cell density (8.3 × 1011 and 6.4 × 1011 cells/cm3). Both of blends exhibit nonuniform cell structure, in which most of small cells spread as “a string of beads.” Foamed PP/PS 70:30 blend shows the most uniform cell structure. Increase in the PS content to 50 wt% and especially 70 wt% transforms it to an irregular open‐cell structure. The cell structure of foamed PP/PS blends is strongly related to the blend phase morphology and the solubility of CO2 in PP more than that in PS, which makes the PP serve as a CO2 reservoir. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Poly (vinyl alcohol) (PVA) foam is a promising environment‐friendly packaging material due to the good biodegradability and excellent mechanical properties. Besides, PVA can be produced on a large scale viathe non‐petroleum routes. However, the preparation of complex‐shaped PVA foam products has not been realized, because PVA is a water‐soluble and semi‐crystalline polymer with a high melting temperature (226°C), which cannot be welded through the conventional bead foaming technology. In this article, a clean and efficient strategy based on microwave foaming and sintering was innovatively developed to manufacture the PVA bead foam products. First, the expandable PVA beads were prepared through polar solvent‐plasticization, followed by supercritical carbon dioxide (scCO2)‐impregnation in solid‐state. The impregnated beads were then surface plasticized with polar solvent by simple coating. Thus, the incorporated polar solvent in the internal and superficial regions of PVA beads was rapidly heated upon exposure to the microwave irradiation, which simultaneously induced the CO2 foaming and interfacial melting, respectively. In this way, the expansion and welding of PVA beads were completed in a one‐step procedure. Meanwhile, the complex‐shaped PVA bead foam products with excellent elasticity and intra‐bead adhesive strength were prepared within a short period of 30 seconds. Therefore, the microwave heating can be considered as an efficient strategy for preparing the high‐performance polymer bead foam products, especially for these high‐melting temperature or glass‐transition temperature polymers.  相似文献   

4.
A stepwise temperature‐ and pressure‐scanning thermal analysis method was developed to measure glass‐transition temperature Tg in the two‐phase polymer–gas systems as a function of gas pressure p, and was used to confirm recent theoretical predictions that certain polymer–gas systems exhibit retrograde vitrification, that is, they undergo rubber‐to‐glass transition on heating. A complete Tgp profile delineating the glass–rubber phase envelope was established for the PMMA‐CO2 system. The retrograde vitrification behavior observed, where at certain gas pressures the polymer exists in the rubbery state at low and high temperatures and in the glassy state at intermediate temperatures, was similar to that reported previously based on the creep‐compliance measurements. The existence of the rubbery state at low temperatures was used to generate foams by saturating the polymer with CO2 at 34 atm and at temperatures in the range −0.2 to 24 °C followed by foaming at temperatures in the range 24 to 90 °C. Foams with very fine cell structure never reported before could be prepared by this technique. For example, PMMA foams with average cell size of 0.35 μm and cell density of 4.4 × 1013 cells/g were prepared by processing the low temperature rubbery phase. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 716–725, 2000  相似文献   

5.
张利 《高分子科学》2016,34(7):889-900
The open-cell structure foams of linear low-density polyethylene (LLDPE) and linear low-density polyethylene (LLDPE)/multi-wall carbon nanotubes (MWCNTs) composites are prepared by using supercritical carbon dioxide (sc-CO2) as a foaming agent. The effects of processing parameters (foaming temperature, saturation pressure, and depressurization rate) and the addition of MWCNTs on the evolution of cell opening are studied systematically. For LLDPE foaming, the foaming temperature and saturation pressure are two key factors for preparing open-cell foams. An increase in temperature and pressure promotes both the cell wall thinning and cell rupture, because a high temperature results in a decrease in the viscosity of the polymer, and a high pressure leads to a larger amount of cell nucleation. Moreover, for the given temperature and pressure, the high pressurization rate results in a high pressure gradient, favoring cell rupture. For LLDPE/MWCNTs foaming, the addition of MWCNTs not only promotes the cell heterogeneous nucleation, but also prevents the cell collapse during cell opening, which is critical to achieve the open-cell structures with small cell size and high cell density.  相似文献   

6.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

7.
《先进技术聚合物》2018,29(7):1953-1965
Poly(butylene succinate) urethane ionomer (PBSUIs) foams with nano‐microcellular morphology were fabricated using supercritical CO2 (sc‐CO2) at different parameters. Effect of urethane ionic group (UIG) content (ranged from 1% to 5%) on the rheology and crystallization of PBSUIs were evaluated by intrinsic, dynamic rheological, X‐ray diffraction, and differential scanning calorimetry measurements. The results show that the complex viscosity of PBSUIs vastly improved, while their intrinsic viscosity and crystallinity decreased. They also evidenced that CO2 promoted the formation of crystallites in the amorphous and increased the Xc of PBSU and PBSUIs foams. Scanning electron microscope was employed to explore the influences of UIG content and foaming parameters on the morphologies of PBSUIs microcellular foams, and it revealed that UIG content was the dominated factor. The cell size and cell densities of PBSUIs microcellular foams were smaller than 5.0 micrometers and higher than 1.5 × 1010 cells/cm3, respectively, even foamed at diverse variations of foam temperature and pressure. Interestingly, PBSUIs with 3% and 5% UIG content achieved microcellular foams in nano‐cells, high‐stretched elliptical shape. The mechanism was ascribed that these PBSUIs with high melt viscosities could retard the CO2 bubbles to merge during the foam process and induce the cells to stretch and orient in depressururization direction. This study proposed a novel method for fabricating PBS nano‐microcellular foams.  相似文献   

8.
Microcellular thin polycarbonate sheets have been prepared by compression molding with the cell size in the range of 2∼20 microns, and cell density larger than 108 cells/cm3. The effect of processing parameters on the microcellular polycarbonate structure has been investigated. The cell size decreases with increasing foaming time till 8 minute and then increases. Besides this parameter slightly decreases with increasing foaming pressure, but increases with increasing temperature. The variation of cell density is contrary to that of cell size, and the foam density decreases with increasing foaming pressure and foaming temperature and displays a variable trend with increasing foaming time under different foaming pressures.  相似文献   

9.
Tissue engineering scaffolds require a controlled pore size and structure to host tissue formation from cell populations. Supercritical carbon dioxide (scCO2) processing can be used to form porous scaffolds in which the escape of CO2 from a plasticized polymer melt generates gas bubbles that shape the pores. The process is difficult to control with respect to changes in final pore size, porosity, and interconnectivity, while the solubility of CO2 in the polymers strongly affects the foaming process. An in‐depth understanding of polymer CO2 interaction will enable a successful scaffold processing. Amorphous poly(DL ‐lactic acid) (PDL LA) and poly(lactic acid‐co‐glycolic acid) (PLGA) polymers are attractive candidates for fabricating scaffolds. In this study, CO2 sorption and swelling isotherms at 35 °C and up to 200 bar on a variety of homo‐ and copolymers of lactic acid and glycolic acids are presented. Sorption is measured through a gravimetric technique using a suspension microbalance and swelling by visualization. The obtained results are modeled using the Sanchez‐Lacombe equation of state. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 483–496, 2008  相似文献   

10.
A novel protocol for preparing magnetic poly(vinyl alcohol) (PVA) beads by reverse spray suspension crosslinking was reported. The hydrophilic Fe3O4 nanoparticles were mixed with PVA, glutaraldehyde, and water to form aqueous phase. Then the aqueous phase was sprayed into vegetable oil by a pressure of nitrogen gas to form water in oil (W/O) suspension. The magnetic PVA beads were obtained in the presence of hydrochloric acid catalyst. It was found that the magnetic PVA beads obtained good properties when the PVA concentration was 10%, and the oil phase temperature was controlled at 40 °C. The mechanical stirring has little impact on the size of magnetic PVA beads in the process of reverse spray suspension crosslinking. The Cibacron Blue (CB) was coupled on the surface of magnetic PVA beads by surface chemical reaction. The morphology, size, and magnetic properties of the magnetic PVA beads were examined by scanning electron microscopy, laser diffraction, and vibrating sample magnetometer, respectively. Compared with the stirring method, it was found that the size of magnetic PVA beads was monodisperse and their saturation magnetization was much higher. Fourier transform infrared and X‐ray photoelectron spectroscopy experimental results proved that CB molecules were covalently immobilized onto the surface of the magnetic PVA beads. Meanwhile, the protein affinity separation experiments demonstrated that the magnetic PVA beads can potentially be used as a carrier for large‐scale protein separation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 203–210, 2008  相似文献   

11.
Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties—such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)—were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission electron microscopy (TEM) images, as well as the optical transparency of the films, revealed that the NFC fibers dispersed well in the resulting PVOH/NFC nanocomposites. Adding NFC increased the tensile modulus of the PVOH/NFC nanocomposites nearly threefold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PVOH matrix. PVOH/NFC nanocomposites were sensitive to moisture content and dynamic mechanical analysis (DMA) tests showed that, at room temperature, the storage modulus increased with decreasing moisture content. The solubility of CO2 in the PVOH/NFC nanocomposites depended on their moisture content and decreased with the addition of NFC. Moreover, the desorption diffusivity increased as more NFC was added. Finally, the foaming behavior of the PVOH/NFC nanocomposites was studied using CO2 and/or water as the physical foaming agent(s) in a batch foaming process. Only samples with a high moisture content were able to foam with CO2. Furthermore, the PVOH/NFC nanocomposites exhibited finer and more anisotropic cell morphologies than the neat PVOH films. In the absence of moisture, no foaming was observed in the CO2-saturated neat PVOH or PVOH/NFC nanocomposite samples.  相似文献   

12.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

13.
The preparation of microcellular polystyrene (PS), lightly sulfonated polystyrene (SPS), zinc‐neutralized lightly sulfonated polystyrene (ZnSPS), and blends of PS/SPS and PS/ZnSPS via supercritical CO2 was carried out with the pressure‐quench process. Both higher foaming temperature and lower pressure result in larger cell sizes, lower cell densities, and lower relative density for microcellular ionomers and blends as for microcellular PS. The difference among various microcellular samples is the change of cell size with the sample composition. The cell size decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. The diffusivity of CO2 in samples also decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. For this series of samples with similar structure and identical solubility of CO2, the varying diffusivity is responsible for the difference of cell sizes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 368–377, 2003  相似文献   

14.
The deformation of isotactic poly‐1‐butene (iPB‐1) matrix, during the CO2‐assisted foaming process, makes the iPB‐1 melt crystallize into form I rather than form I′, which crystallizes after annealing under high‐pressure CO2 without foaming. The result provides a new strategy to directly obtain porous iPB‐1 with stable form I from iPB‐1 melt.  相似文献   

15.
《先进技术聚合物》2018,29(8):2224-2229
Poly(vinyl alcohol) (PVA) is a promising biocompatible polymer, whose applicability is limited by its narrow processing window. Here, we adopted a facile approach to broaden the processing windows of PVA based on phosphoric ester of poly(ethylene oxide) (10) nonylphenyl (NP‐10P). Thermal analysis shows that both the melting temperature (Tm) and the glass transition temperature (Tg) of PVA decrease noticeably as NP‐10P content increases, indicating good miscibility of NP‐10P with PVA. The thermal degradation kinetics suggests composites display excellent thermal stability compared with neat PVA. The pyrolysis mechanism of PVA before and after modification with NP‐10P varies from chain unzipping degradation followed by chain random scission to chain random scission. The processing window of PVA is broadened from 9°C to 98°C with low content NP‐10P (5 wt%). Moreover, the composites maintain significant mechanical performance and transparency. This work provides an environmentally friendly and economical method to improve the possibility of thermal melt processing for PVA.  相似文献   

16.
In situ preparation of a cross‐linked poly(methyl methacrylate) (PMMA) and polystyrene (PS) blend and its foaming were investigated for creating a bimodal cellular structure in the foam. Methyl methacrylate (MMA) monomer was dissolved in PS under supercritical CO2 at a temperature of 60 °C and a pressure of 8 MPa, and the polymerization of MMA was conducted at 100 °C and 8 MPa CO2, with a cross‐linking agent in PS. The blend was successively foamed by depressurizing the CO2. CO2 played the roles of plasticizing the PS and enhancing the monomer dispersion in PS during the sorption process and as a physical blowing agent in the foaming process. The cross‐linking agent was used for controlling the elasticity of polymerized PMMA domains and differentiating their elasticity from that of the PS matrix. The difference in elasticity delayed the bubble nucleation in the PMMA domains from that in the PS and made the cell size bimodal distribution, in which the smaller cells ranging from 10 to 30 µm in diameter were located in the wall of large cells of 200–400 µm in diameter. The effects of the initial MMA content, the concentration of cross‐linking agent, and the depressurization rate on the bimodal cell structure and bulk foam density were investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
应用超临界CO2制备微孔聚丙烯的微孔形貌   总被引:1,自引:0,他引:1  
研究了应用超临界CO2技术制备微孔聚丙烯时发泡条件和聚丙烯(PP)的熔体强度对微孔形貌的影响。结果表明:在一定的饱和压力下,随着温度的升高,PP的变形能力改善,有利于泡孔的长大。随着饱和压力的增加,PP的熔点降低,升高压力和升高温度具有一定的等同作用。由于CO2在PP内分散的不同,高压低温时得到的泡孔比高温低压时得到的泡孔要规整。降压速率对泡孔形貌的影响因饱和压力的大小而异,饱和压力较高时随着降压速率的提高,孔密度增加,泡孔形貌经历了一个从球体到多面体转变的过程。由于PP熔体强度较低,在发泡温度和PP熔点之间非常接近时,CO2气体容易冲破孔壁而使泡孔呈开孔结构。  相似文献   

18.
tert‐Butyl‐substituted poly(ether ether ketone) (tBuPEEK), which does not undergo crystallization with thermal annealing, crystallizes readily when treated with compressed CO2. The dissolved CO2 causes a reduction in the glass‐transition temperature of the polymer–gas system and enhances the chain mobility of the macromolecules, thereby bringing about crystallization. In the presence of CO2, crystallization is increasingly favored with increasing CO2 pressure and treatment temperature. The melting point of tBuPEEK crystals increases linearly with the CO2 pressure applied in the treatment, indicating an increase in the order and/or size of the crystals. The extent of crystallinity increases when small amounts of methanol or dichloromethane are used as a cosolute with CO2. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1505–1512, 2001  相似文献   

19.
A general,green and efficient method for the synthesis of transdiiodoalkenes in CO2(sc) has been developed.Trans-diiodoalkenes were obtained stereospecifically in quantitative yields via diiodination of both electron-rich and electron-deficient alkynes in the presence of KI,Ce(SO4)2 and water in supercritical carbon dioxide [CO2(sc)]at 40℃.  相似文献   

20.
This study dedicates to foaming of biocompatible blends of polylactic acid and thermoplastic polyurethane reinforced with bio-degradable cellulose nanofibers. This research primarily was associated with fabrication of PLA-TPU nanocomposites using a low weight fraction of cellulose nanofibers as a biodegradable reinforcement. Microstructural and mechanical properties of fabricated nanocomposites were examined and diffractometry was utilized to verify formation of percolated nanocomposites. Microcellular foaming was then performed with CO2 as a blowing agent. Central composite design was applied in designing the experiments to evaluate the effects of main operating variables consisting of saturation pressure and time, heating time and foaming temperature. The results demonstrated that high saturation pressure and time promoted low cell diameters (below 5 μm) and high cell densities (above 109 cell/cm3) due to the grown degree of crystallinity and higher PLA-TPU miscibility. Accordingly, adding TPU and CNF to the matrix create high crystalline foamed samples decorated with low bulk density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号