首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.  相似文献   

2.
A revised parameterization of the extended Laidler method for predicting standard molar enthalpies of atomization and standard molar enthalpies of formation at T = 298.15 K for several families of hydrocarbons (alkanes, alkenes, alkynes, polyenes, poly-ynes, cycloalkanes, substituted cycloalkanes, cycloalkenes, substituted cycloalkenes, benzene derivatives, and bi and polyphenyls) is presented. Data for a total of 265 gas-phase and 242 liquid-phase compounds were used for the calculation of the parameters. Comparison of the experimental values with those obtained using the additive scheme led to an average absolute difference of 0.73 kJ · mol−1 for the gas-phase standard molar enthalpy of formation and 0.79 kJ · mol−1 for the liquid-phase standard molar enthalpy of formation. The database used to establish the parameters was carefully reviewed by using, whenever possible, the original publications. A worksheet to simplify the calculation of standard molar enthalpies of formation and standard molar enthalpies of atomization at T = 298.15 K based on the extended Laidler parameters defined in this paper is provided as supplementary material.  相似文献   

3.
Vapor pressures of (dl)-1,2-propanediamine and 2-methyl-1,2-propanediamine were measured using the transpiration method. Molar enthalpies of vaporization were derived from the vapor pressure temperature dependence. Thermodynamic data on alkanediamines available in the literature were collected and treated uniformly. Consistency of the experimental data set for alkanediamines was evaluated with group-contribution and quantum-chemical methods.The standard molar entropy of formation and the standard molar Gibbs function of formation have been calculated. Vaporization and formation enthalpies of alkanediamines of benchmark quality are recommended for practical thermochemical calculations and validation of empirical and theoretical methods.  相似文献   

4.
The standard (p = 0.1 MPa) molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids were derived from their standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of 2- and 3-cyanobenzoic acids. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the condensed phase and standard molar enthalpies for phase transition. The results obtained are −(150.7 ± 2.0) kJ · mol−1, −(153.6 ± 1.7) kJ · mol−1 and −(157.1 ± 1.4) kJ · mol−1 for 2-cyano, 3-cyano and 4-cyanobenzoic acids, respectively. Standard molar enthalpies of formation were also estimated by employing two different methodologies: one based on the Cox scheme and the other one based on several different computational approaches. The calculated values show a good agreement with the experimental values obtained in this work.  相似文献   

5.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, for 5-methyluracil, 6-methyluracil, and 5-nitrouracil were derived from the values of the standard massic energies of combustion measured by static bomb combustion calorimetry. The results obtained together with literature values of the enthalpies of sublimation yielded the standard molar enthalpies of formation, in gaseous phase, at T = 298.15 K. These values are discussed in the terms of structural enthalpic increments.  相似文献   

6.
Molar enthalpies of sublimation of two crystal forms of caffeine were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of primary experimental results on the temperature dependences of vapour pressure and phase transitions have been collected from the literature and have been treated in a uniform manner in order to derive sublimation enthalpies of caffeine at T = 298.15 K. This collection together with the new experimental results reported here has helped to resolve contradictions in the available sublimation enthalpies data and to recommend a consistent and reliable set of sublimation and formation enthalpies for both crystal forms under study. Ab initio calculations of the gaseous molar enthalpy of formation of caffeine have been performed using the G3MP2 method and the results are in excellent agreement with the selected experimental data.  相似文献   

7.
The standard (p° = 0.1 MPa) molar enthalpies of formation of crystalline 2,3,5-trimethylpyrazine-1,4-dioxide and 2,3,5,6-tetramethylpyrazine-1,4-dioxide were measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpies of sublimation, at T = 298.15 K, were obtained from Calvet microcalorimetric measurements. These values were used to derive the respective standard molar enthalpies of formation in gaseous phase. The mean N–O bond dissociation enthalpy has been calculated for both compounds.  相似文献   

8.
Thermochemical properties of uracil and thymine have been evaluated using additional experiments. Standard (p0 = 0.1 MPa) molar enthalpies of formation in the gas phase at T = 298.15 K for uracil −(298.1 ± 0.6) and for thymine −(337.6 ± 0.9) kJ · mol−1 have been derived from energies of combustion measured by static bomb combustion calorimetry and molar enthalpies of sublimation determined using the transpiration method. The G3 and G4 quantum-chemical methods were used for calculations of theoretical gaseous enthalpies of formation being in very good agreement with the re-measured experimental values.  相似文献   

9.
The standard (p° = 0.1 MPa) molar enthalpies of formation of 3-acetylbenzonitrile and benzoylacetonitrile, in the crystalline phase, were derived from the respective standard massic energies of combustion measured by static bomb combustion calorimetry, in oxygen, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by Calvet microcalorimetry. From the above experimentally determined enthalpic parameters, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, are found to be: (52.4 ± 2.1) kJ · mol−1 and (74.8 ± 2.5) kJ · mol−1 for 3-acetylbenzonitrile and benzoylacetonitrile, respectively.Molecular structures were computed using highly accurate ab initio techniques. Standard molar enthalpies of formation of the experimentally studied compounds were derived using an appropriate set of working reactions. Very good agreement between the calculated and the experimental values was obtained, so the calculations were extended to the estimates of the standard molar enthalpies of formation of 2- and 4-acetylbenzonitriles whose study was not performed experimentally.Our results were further interpreted and rationalized in terms of the enthalpic stability and compared to other relevant disubstituted benzenes.  相似文献   

10.
Sergey P. Verevkin   《Thermochimica Acta》1998,310(1-2):229-235
The standard enthalpies of formation ΔfHo (liq. or cr.) at the temperature T = 298.15 K were measured using combustion calorimetry for benzophenone (A), 1-indanone (B), -tetralone (C), 9-fluorenone (D), anthrone (E) and dibenzosuberone (F). The standard enthalpies of vaporization ΔvHo or sublimation ΔsHo of A-F and 5,7-dihydro-6H-dibenzo[a,c]cyclohepten-6-one (G) were obtained from the temperature function of the vapor pressure measured in a flow system. Enthalpies of fusion ΔmH of solid compounds were measured by DSC. From the enthalpies of formation of the gaseous compounds of A-G the values of their strain enthalpies were derived and structural effects discussed.

  相似文献   


11.
Molar enthalpies of sublimation of 1,2-di-hydroxybenzene, 1,3-di-hydroxybenzene, and 1,4-di-hydroxybenzene were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The molar enthalpies of fusion of 1,2- and 1,4-isomers were measured by differential scanning calorimetry (DSC). A large number of the primary experimental results on the temperature dependences of vapor pressure and phase transitions have been collected from the literature and have been treated in a uniform manner in order to derive sublimation, vaporization and fusion enthalpies of di-hydroxybenzenes at the reference temperature 298.15 K. The data sets on phase transitions were checked for internal consistency. This collection together with the new experimental results reported here has helped to resolve contradictions in the available thermochemical data and to recommend consistent and reliable sublimation, vaporization and fusion enthalpies for all three isomers under study.  相似文献   

12.
The excess molar volumes V m E at atmospheric pressure and at 25°C for binary mixtures of diethyl carbonate with n-heptane, n-decane, n-tetradecane, 2,2,4-trimethylpentane, cyclohexane, benzene, toluene, or tetrachloromethane have been obtained over the whole mole-fraction range from densities measured with a vibrating-tube densimeter. The V m E are positive for all the systems investigated, except for the mixture with toluene which is negative. The results for V m E together with data previously published on excess molar enthalpies H m E and excess molar Gibbs energies G m E , suggest interactions between carbonate and hydrocarbons which are stronger with aromatic than with aliphatic hydrocarbons.Thermodynamics of binary mixtures containing organic carbonates, Part 10.  相似文献   

13.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, in the gaseous phase, of three piperidinecarboxamide derivatives, namely 1-, 3- and 4-piperidinecarboxamide, were determined from their enthalpies of combustion and sublimation, obtained by static bomb calorimetry in oxygen and by Calvet microcalorimenty, respectively.The final results are analysed and discussed in terms of molecular structure.  相似文献   

14.
This paper reports a combined experimental and computational thermochemical study of 4-benzyloxyphenol. Static bomb combustion calorimetry and Knudsen mass-loss effusion technique were used to determine the standard (p° = 0.1 MPa) molar enthalpy of combustion, , and of sublimation, , respectively, from which the standard (p° = 0.1 MPa) molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, were derived.For comparison purposes, the gas-phase enthalpy of formation of this compound was estimated by G3(MP2)//B3LYP calculations, using a set of gas-phase working reactions; the results are in excellent agreement with experimental data. G3(MP2)//B3LYP computations were also extended to the calculation of the gas-phase enthalpies of formation of the 2- and 3-benzyloxyphenol isomers. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies and, finally, O–H bond dissociation enthalpies.  相似文献   

15.
丙氨酸离子液体[C4mim][Ala]的热化学性质   总被引:2,自引:1,他引:1  
在298.15 K下利用恒温环境溶解热量计测定了一系列含有已知微量水的1-丁基-3-甲基咪唑丙氨酸盐([C4mim][Ala])离子液体(IL)不同浓度样品的摩尔溶解焓. 借助Debye-Hückel极限项, 用外推法确定了不同含水量的[C4mim][Ala]样品的标准摩尔溶解焓[ΔsHm0(wc)]. 随着样品中水含量的增加, ΔsHm0(wc)的绝对值下降, 将ΔsHm0(wc)对含水量作图得到很好的直线, 其截距ΔsHm0(pure IL)=-60.74 kJ/mol, 可看作是不含水的[C4mim][Ala]标准摩尔溶解焓的估算值. 利用精密氧弹热量计测定了[C4mim][Ala]的燃烧热, 计算得到其标准摩尔生成焓ΔfHm0=(-675±11) kJ/mol.  相似文献   

16.
The enthalpies of formation of chlorinated methanes, ethanes, ethylenes, phenols, and benzenes have been calculated at the G3X level of theory using the atomization energy procedure and the method of isodesmic reactions. By comparing the most reliable experimental data on chlorinated hydrocarbons recommended by Manion [Manion JA (2002) J Phys Chem Ref Data 31:123] with the G3X results, the accuracy of theoretical enthalpies of formation is estimated as ranging from ±4 to ±10 kJ/mol. Only for hexachloroethane, the difference between the experimental value and G3X result was outside this range and the experimental enthalpy of formation of hexachloroethane was called into question by theory. The G3X enthalpies of formation of all chlorobenzenes agree well with experimental data which were partly reanalyzed using recent experimental data on enthalpies of sublimation. Based on the G3X results, a set of self-consistent experimental data for chlorobenzenes is recommended. The enthalpies of formation of some polychlorinated dibenzo-p-dioxins were estimated using improved enthalpies of formation for chlorobenzenes. The possible inaccuracy of previously estimated values for polychlorinated aromatic compounds is discussed.  相似文献   

17.
Ab initio molecular orbital theory has been used to calculate enthalpies of formation of the keto tautomers of 1-hydroxyisoquinoline, 5-hydroxyisoquinoline, and 1,5-dihydroxyisoquinoline. The high-level composite method G3//B3LYP has been used for this study, and the results have been compared with available experimental values. The keto tautomer is more favourable for 1-hydroxyisoquinoline and 1,5-dihydroxyisoquinoline, and the experimental enthalpies of formation are in better agreement with the theoretical enthalpies of formation of the keto forms.  相似文献   

18.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two bromine fluorene derivatives: 2-bromofluorene and 2,7-dibromofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The vapour pressures of the crystalline phase of the two compounds were measured using the Knudsen effusion method and a static method that has also been used to measure the liquid vapour pressures of 2-bromofluorene. From these results the standard molar enthalpies, entropies and Gibbs energies of sublimation of the two compounds studied and of vapourisation of 2-bromofluorene were derived. The enthalpies and temperatures of fusion were determined from DSC experiments. Derived results of standard enthalpies and Gibbs energies of formation, in both gaseous and crystalline phases, were compared with the ones reported in the literature for fluorene.The experimental values of the gas-phase enthalpies of formation of each compound were compared with estimates based on density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with the 6-311++G(d,p) basis set.  相似文献   

19.
Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H2N–(CH2)n–NH2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat’s indices has been found, proving the internal consistency of the measured data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号