首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Analytical letters》2012,45(8):575-584
Abstract

The complexations of a new ligand, o-(2-thiazolylazo)-4-ethylphenol(TAEP) with Ca(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hq(II) and Pb(II) have been studied by potentiometric titrations, at 25.0 ± 0.2°C and an ionic strength of 0.1 in 30% v/v dioxane-water mixture. The dissociation constant and spectral data of TAEP and formation constants of the complexes containing various molar ratios of metal ion to ligand, are reported. It is observed that Ca(II) forms only an ML complex in any molar ratios, whereas other metal ions react in two steps forming ML and ML2 complexes in a 1:3 molar ratio. In the case of 1:1 and 1:2 molar ratios, Mn(II), Co(II), Cd(II) and Hg(II) seemed to form bi- or poly-nuclear complexes because of slightly different formation curves from those of 1:3 molar ratio. The sequence of the first successive formation constant is Cu > Hg > Ni > Pb > Co > Zn > Cd > Mn > Ca, showing Mellor-Maley's order. Further correlation is shown between the formation constants and the second ionization potentials of the metals.  相似文献   

2.
Metal complexes of some divalent metal ions (Co, Ni, Cu, Zn, Hg, and Pd) with isatin-β-thiosemicarbazone (ITS) as the Schiff base have been investigated potentiometrically and spectrophotometrically. The dissociation constants of the ligand and formation constants of the metal complexes, as well as the corresponding thermodynamic functions (ΔG, ΔH and ΔS) have been determined at different temperatures in ethanol—water solution. The full stability constants were also evaluated spectrophotometrically by the Job method. The experimental results indicate that Cu(II), Zn(II), Pd(II), and Hg(II) form one-to-one molecular complexes (ML) with the studied ligand, whereas Co(II) and Ni(II) form both ML and ML2 species.  相似文献   

3.
The stepwise formation constants of N-antipyrinyl-N′-3-phenyl-2-propenoyl-thiourea (I) complexes with metal ions of the first transition series, Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been determined in 70% (V/V) ethanol-water medium. The formation constants for the chelates follow the Irving-Williams series: Zn(II)<Cu(II)>Ni(II)>Co(II)>Mn(II) The effect of ionic radius and electronegativity on the chelate formation are discussed. Complexes of Cu(II) and Ni(II) have been synthesised and characterised by elemental analysis, electrolytic conductance, IR spectra and magnetic susceptibility measurements. The ligand forms bis-complexes with Cu(II) and Ni(II). The binding sites are oxygen and sulphur atoms.  相似文献   

4.
《Analytical letters》2012,45(5):413-422
Abstract

The stepwise metal-ligand stability constants of tetracycline and oxytetraoycline chelates with Mg(II), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Cu(II), Zn(II), Zr(II) and Sn(II) have been determined using the Bjerrum-Calvin titration technique as employed by Irving and Rossotti. Protonation constant of the ligand and stability constants of the respective metal complexes have been determined at constant temperature (25°C) and ionic strength (0.1 M KCl). The general order of overall stability constant values have been found to be: Zr(IV) > Fe(III) > Co(II) > Zn(II) > Mg(II) > Mn(II) > Ni(II) > Sn(II) > Tn(II) > Cr(II). The rign values of the atability constanta are attricutel to the Ligands, which are stronger as an acid and weaser as a oase.  相似文献   

5.
A study of the complexes originated by U(VI), Cu(II), Pb(II), Ni(II), Co(II), Zn(II), Cd(II), Mn(II), Ca(II), Mg(II), Ba(II), and Sr(II), and SPADNS (trisodium salt of 2-(p-sulfophenylazo)-1, 8-dihydroxynaphthalene-3,6-disulfonic acid) has been made by means of spectrophotometric and potentiometric methods. The dissociation constants of the ligand and the formation constants of the metal ion-SPADNS complexes have been determined at 25 ± 0.1 °C and ionic strength 0.1 (NaClO4).  相似文献   

6.
The reactions of symmetric and nonsymmetric alkyl-substituted 2,2′-dipyrrolylmethenes with Cu(II), Ni(II), Co(II), Zn(II), Cd(II), and Hg(II) acetates in dimethylformamide solutions at 298.15 K were studied. The formation of hetero- and homoligand complexes was observed in the systems studied depending on the concentration conditions and the nature of the complexing metal. The stepped and complete constants of formation for metal complexes were determined. The key trends of the influence of the metal and ligand nature on the stabilization of the complexes were established.  相似文献   

7.
Abstract

The protonation constants of pentaethylenehexaamineoctaacetic acid, PHOA, were determined by potentiometric titration in aqueous solution at an ionic strength of 0.10 M KNO3 and at 25°C. The formation constants of various metal-PHOA complexes were also obtained by titrating mixtures of metal to ligand in molar ratios of 1:1 and 2:1. Calculations were performed with the computer program BEST. Individual formation constants are reported for Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) with PHOA as well as their related protonated species. The stabilities of the 1:1 and 2:1 complexes are similar in many respects to complexes formed with tetraethylenepentaamineheptaacetic acid (TPHA). The similarities in the stabilities of both the 1:1 and 2:1 complexes with PHOA and those with TPHA are explained in terms of ligand denticity and steric effects. Mercury(II)-PHOA complexes exhibited the highest formation constants, followed by copper(II)-PHOA complexes which had higher log K ML's than those for Co(II), Ni(II), Zn(II), Cd(II) and Pb(II).  相似文献   

8.
The stoichiometry and stability constant of metal complexes with 4-(3-methoxy-salicylideneamino)-5-hydroxynaphthalene-2,7-disulfonic acid monosodium salt (H2L) and 4-(3-methoxysalicylideneamino)-5-hydroxy-6-(2,5-dichlorophenylazo)-2,7-naphthalene disulfonic acid monosodium salt (H2L1) were studied by potentiometric titration. The stability constants of H2L and H2L1 Schiff bases have been investigated by potentiometric titration and u.v.–vis spectroscopy in aqueous media. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 °C and 0.1 m KCl ionic strength. The dissociation constants for H2L were obtained as 3.007, 7.620 and 9.564 and for H2L1, 4.000, 6.525, 9.473 and 10.423, respectively. The complexes were found to have the formulae [M(L)2] for M = Co(II), Ni(II), Zn(II) and Cu(II). The stability of the complexes follows the sequence: Zn(II) < Co(II) < Cu(II) < Ni(II). The high stability of H2L1 towards Cu(II) and Ni(II) over the other ions is remarkable, in particular over Cu(II), and may be of technological interest. Concentration distribution diagram of various species formed in solution was evaluated for ligands and complexes. The formation of the hydrogen bonds may cause this increased stability of ligands. The pH-metric data were used to find the stoichiometry, deprotonation and stability constants via the SUPERQUAD computer program.  相似文献   

9.
Stanley RW  Cheney GE 《Talanta》1966,13(12):1619-1629
The acid dissociation constants of 4-(2'-thiazolylazo)-resorcinol (TAR) and the formation constants of the metal complexes formed by this reagent with Cu(II), Ni(II), Co(II), Zn(II) and Mn(II) have been determined potentiometrically at 25° in 50% v/v mixtures of dioxane and water. The values obtained for TAR and the metal complexes are contrasted with similar values for the reagent 4-(2'-pyridylazo)-resorcinol (PAR). Differences and similarities between the co-ordinating tendencies of these two reagents are revealed in terms of the proton displacement constant and the acid dissociation constants of the metal complexes. Evidence is presented which suggests that both TAR and PAR may act as terdentate ligands toward some bivalent metal ions.  相似文献   

10.
Abstract

The protonation constants of tetraethylenepentaamineheptaacetic acid, TPHA, were determined by potentiometric titration in aqueous solution at an ionic strength of 0.10 M KNO3 and at 25°C. The formation constants of various metal-TPHA complexes were also obtained by titrating mixtures of metal to ligand in molar ratios of 1 :1 and 2:1. Calculations were performed with the computer program BEST. Individual stability constants are reported for Co(II). Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) with TPHA as well as their related pro-tonated species. The stabilities of the 1:1 complexes parallel to those of similar complexes with DTPA and TTHA. However the 2: 1 complexes have significantly larger log K ML's than their TTHA counterparts. The extra stability of the 2:1 metal-TPHA complexes is explained in terms of ligand denticity and steric effects. Mercury(II)-TPHA complexes exhibited the highest formation constants and the copper-TPHA complexes had slightly higher log K ML's than those for Co(II), Ni(II), Zn(II), Cd(II) and Pb(II).  相似文献   

11.
The coordination compounds obtained by reaction of hot solutions of dipicolinic acid with the carbonates of the divalent metal ions manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) are studied using TG, DSC and HTRS techniques. For the thermal stability a sequence Mn > Fe > Zn > Co > Ni > Cu may be observed. This series is compared with the similar series obtained with isocinchomeronic acid. The thermal stability is, for each metal of the series, isocinchomeronic > dipicolinic. Thermal stability is discussed in terms of the intermolecular bonds, of the structures and of the stability constants of the complexes examined.  相似文献   

12.
The formation constants of salicyl-4-amino-2,3-dimethyl-1-phenyl-3-pyrazoline-5-one (SAAP) complexes with 3d transition metal ions [Cu(II), Ni(II), Co(II), Zn(II) and Mn(II)] have been determined in 60% ethanol-water medium ofμ = 0.1M (NaCl) at 25°C. It is observed that the formation constants for chelates with 3d transition metals follow the order Mn(II) < Co(II) < Ni(II) < Zn(II) < Cu(II). The effects of metal ions, ionic radii, electronegativities and ionization potentials on chelate formation constants are discussed. Complexes of UO2(II) and Pd(II) have been synthesized and characterised by elemental analysis, electrolytic conductance, IR spectra and magnetic measurements. The ligand forms the complexes PdLCl and UO2L2,2H2O, where L is a uninegatively charged tridentate ligand (ONO donor sets).  相似文献   

13.
A compartment ligand 2,6-bis[5′-chloro-3′-phenyl-1H-indole-2′-carboxamidyliminomethyl]-4-methylphenol was prepared and homobinuclear phenol-bridged Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Hg(II), Fe(III), and Mn(II) complexes have been prepared by the template method using the precursors 2,6-diformyl-4-methylphenol, 5-chloro-3-phenylindole-2-carbohydrazide and metal chlorides in 1 : 2 : 2 ratio, respectively. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, NMR, FAB mass and ESR spectra, TGA, and powder XRD data. Cu(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes exhibit square pyramidal geometry whereas Ni(II), Mn(II), and Fe(III) complexes are octahedral. Low magnetic moment values for Cu(II), Ni(II), Co(II), Fe(III), and Mn(II) complexes show antiferromagnetic spin-exchange interaction between two metal centers in binuclear complexes. The ligand and its complexes were tested for antibacterial activity against Escherichia coli and Staphyloccocus aureus, and antifungal activity against Aspergillus niger and Candida albicans.  相似文献   

14.

Nine new [metal uric acid] complexes [M(Ua) n ]°·XH 2 O have been synthesized. These complexes have been characterized by elemental analysis, X-ray diffraction (XRD), magnetic susceptibility ( w eff. ), FTIR spectra, thermal analysis (TG & DTA), and electronic spectra (UV/visible). Uric acid (HUa) coordinates as a bidentate ligand to Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Fe(III) through the protonated N-7 within the imidazole ring and O-6 within the pyrimidine ring. Uric acid forms neutral metal urate complexes with all the above metal ions. The quantitative compositions were determined as [M(Ua) 2 ·(H 2 O) 2 ]°·XH 2 O where M(II)=Mn, Fe, Co, Ni, Cu, Zn and X=2, 4, 2, 4, 2, 2, respectively. The M(II) complexes exhibit an isostructural octahedral coordination with N-7, O-6 of two uric acid ligand molecules, and O of two water molecules. Compositions were also determined as [M(Ua) 3 ]°·YH 2 O where M(III)=Al, Cr, Fe and Y=6, 3, 3 respectively. All the M(III) complexes form an isostructural octahedral coordination with N-7 and O-6 of three uric acid ligand molecules. Iron(III) complexes prepared with N 1 , N 3 and N 9 -methyl uric acid yielded brown complexes with a metal ligand ratio of 1 3, while N 7 -methyl uric acid did not yield a complex due to blockage of N-7 with a methyl group.  相似文献   

15.
The dissociation constants for o-carboxyphenylhydrazoethylacetoacetate (o-CPHEA) ligand, as well as the stability constants for the divalent metal complexes of Cu, (II), Ni (II), Co (II), Zn (II)and Cd (II) ions, have been calculated pH-meterically in different solvents. The dissociation constans pK1=4.10 and pK2=10.55 of the insoluble organic ligand are calculated in aqueous medium. The effect of solvents, the relation between stabilities and both electronegativities and ionization potential are studied.  相似文献   

16.
Dimeric complex ions of the type [M(A-H)A]+, where M=metal ion (Co, Ni, Cu, and Zn) and A=ligand (lactic acid, methyl lactate or ethyl lactate), were generated in the gas phase under electrospray ionization conditions. The collision-induced dissociation spectra of [M(A-H)A]+ ions were recorded to study the behaviour of ligand and metal ions in decomposition of these dimeric complex ions. Based on the fragmentation pathways observed for complex ions of lactic acid, it is found that both the carboxylic and hydroxyl groups of lactic acid are involved in the complex formation following displacement of a proton by the metal ion. The dimeric complex ions of Co, Ni, and Zn dissociated to yield similar types of ions, whereas that of Cu behaved differently. The dissociations of Co-, Ni-, and Zn-bound dimeric complexes involved losses of neutral molecules while keeping the oxidation state of the metal ion unchanged. However, elimination of radicals is found in the dissociation of dimeric complex ions of Cu, and the oxidation state of copper is reduced from Cu(II) to Cu(I) in the resulting fragment ions. The deprotonated ligand is involved in the fragmentation pathway of Cu complexes, whereas it is intact in other complexes. The oxidation state of the metal ion, nature of the ligand, and site of attachment to the metal ion are found to control the dissociation of these dimeric complex ions.  相似文献   

17.
Protonation constant of an unsymmetrical Schiff base, salicylidene(N-benzoyl)glycyl hydrazone (SalBzGH), and formation constants of its complexes have been determined potentiometrically at different temperatures in aqueous dioxane medium. Complexes of SalBzGH with VO(IV), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) have been prepared. Elemental analyses, pH-metric, molar conductance, magnetic susceptibility, electronic, IR, ESR, XRD (powder) and NMR studies have been carried out to study the coordination behaviour of SalBzGH toward these metal ions. pH-metric and 1H NMR studies show the presence of two dissociable protons in the ligand. IR and NMR spectra suggest the tridentate nature of the ligand, coordinating as a uninegative species in the Mn(II) complex and as a dinegative species in all the other complexes. Presence of two different conformers of the ligand at room temperature and stabilization of a single conformer upon complex formation have been established from1H NMR spectra of the metal-free ligand, Zn(II) and Hg(II) complexes recorded at 296 K. Electronic and ESR spectra indicate highly distorted tetragonal geometry for VO(IV) and Cu(II) complexes. XRD powder patterns of the Zn(II) complexes are indexed for an orthorhombic crystal system.  相似文献   

18.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

19.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

20.

Abstract  

Acetone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H2AHNH) has been prepared and its structure confirmed by elemental analysis and 1H NMR spectroscopy. It has been used to produce diverse complexes with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and U(VI)O2 ions. The complexes obtained have been investigated by thermal analysis, spectral studies (1H NMR, IR, UV–visible, ESR), and magnetic measurements. IR spectra suggest that H2AHNH acts as a bidentate ligand. The electronic spectra of the complexes and their magnetic moments provide information about geometries. The ESR spectra give evidence for the proposed structure and the bonding for some Cu(II) complexes. Thermal decomposition of the Ni(II) and Cu(II) complexes afforded metal oxides as final products. Kinetic data were obtained for each stage of thermal degradation of some of the complexes using the Coats–Redfern method. The formation of complexes in solution was studied pH-metrically and the order of their stability constants (log K) was found to be U(VI)O2 > Cu(II) > Zn(II) > Ni(II) > Cd(II) > Co(II). Antimicrobial and eukaryotic DNA studies were carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号