首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
By utilizing available experimental data for net energy transfer spectra for homogeneous turbulence, contributions P(, ) to the energy transfer at a wavenumber from various other wavenumbers are calculated. This is done by fitting a truncated power-exponential series in and to the experimental data for the net energy transfer T(), and using known properties of P(, ). Although the contributions P(, ) obtained by using this procedure are not unique, the results obtained by using various assumptions do not differ significantly. It seems clear from the results that for a region where the energy entering a wavenumber band dominates that leaving, much of the energy entering the band comes from wavenumbers which are about an order of magnitude smaller. That is, the energy transfer is rather nonlocal. This result is not significantly dependent on Reynolds number (for turbulence Reynolds numbers based on microscale from 3 to 800). For lower wavenumbers, where more energy leaves than enters a wavenumber band, the energy transfer into the band is more local, but much of the energy then leaves at distant wavenumbers.  相似文献   

2.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

3.
Zusammenfassung Die Stabilität der ebenen Couette- und der ebenen Poiseuille-Strömung nicht-newtonscher Fluide wird für kleine Störungen in der viskometrischen Ebene untersucht. Der Einfluß der Relaxationszeit der Störungen wird vernachlässigt. Es wird gezeigt, daß die ebene Couette-Strömung unabhängig von der ReZahl instabil wird, fallsd(N)/d > 4 >d gilt. Hier bedeuten die Schergeschwindigkeit,N den ersten Normalspannungskoeffizienten, die Viskosität und d die differentielle Viskosität ( d =d/d). Das gleiche Kriterium gilt mit den Daten an der Kanalwand auch für die Poiseuille-Strömung. In diesem Fall oszillieren die Eigenfunktionen in einer sehr dünnen, wandnahen Schicht und klingen im Flüssigkeitsinnern sehr rasch ab.
Summary The stability of plane Couette and plane Poiseuille flow of a non-Newtonian fluid is investigated for small perturbations in the viscometric plane. The influence of the relaxation time of the perturbations is neglected. It is shown that plane Couette flow will become unstable independently of Reynolds number ifd(N)/d > 4 d holds. Here are the rate of shear velocity,N the first normal stress coefficient, the viscosity and d the differential viscosity ( d =d/d). The same criterion holds also for plane Poiseuille flow with the data taken at the wall. In this case the eigenfunctions are oscillating in a very thin layer near the wall and decaying very rapidly in the inner region of the flow field.
Mit 11 Abbildungen  相似文献   

4.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

5.
In the method of volume averaging, the difference between ordered and disordered porous media appears at two distinct points in the analysis, i.e. in the process of spatial smoothing and in the closure problem. In theclosure problem, the use of spatially periodic boundary conditions isconsistent with ordered porous media and the fields under consideration when the length-scale constraint,r 0L is satisfied. For disordered porous media, spatially periodic boundary conditions are an approximation in need of further study.In theprocess of spatial smoothing, average quantities must be removed from area and volume integrals in order to extractlocal transport equations fromnonlocal equations. This leads to a series of geometrical integrals that need to be evaluated. In Part II we indicated that these integrals were constants for ordered porous media provided that the weighting function used in the averaging process contained thecellular average. We also indicated that these integrals were constrained by certain order of magnitude estimates for disordered porous media. In this paper we verify these characteristics of the geometrical integrals, and we examine their values for pseudo-periodic and uniformly random systems through the use of computer generated porous media.

Nomenclature

Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - a i i=1, 2, 3 gaussian probability distribution used to locate the position of particles - I unit tensor - L general characteristic length for volume averaged quantities, m - L characteristic length for , m - L characteristic length for , m - characteristic length for the -phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1, 2, 3 lattice vectors, m - m convolution product weighting function - m v special convolution product weighting function associated with the traditional volume average - n i i=1, 2, 3 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - r position vector, m - r m support of the weighting functionm, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume,, m3 - x positional vector locating the centroid of an averaging volume, m - x 0 reference position vector associated with the centroid of an averaging volume, m - y position vector locating points relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - /L, small parameter in the method of spatial homogenization - standard deviation ofa i - r standard deviation ofr - r intrinsic phase average of   相似文献   

6.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

7.
In this paper we examine the generalized Buckley-Leverett equations governing threephase immiscible, incompressible flow in a porous medium, in the absence of gravitational and diffusive/dispersive effects. We consider the effect of the relative permeability models on the characteristic speeds in the flow. Using a simple idea from projective geometry, we show that under reasonable assumptions on the relative permeabilities there must be at least one point in the saturation triangle at which the characteristic speeds are equal. In general, there is a small region in the saturation triangle where the characteristic speeds are complex. This is demonstrated with the numerical results at the end of the paper.Symbols and Notation a, b, c, d entries of Jacobian matrix - A, B, C, D coefficients in Taylor expansion of t, v, a - det J determinant of matrix J - dev J deviator of matrix J - J Jacobian matrix - L linear term in Taylor expansion for J near (s v, sa) = (0, 1) - m slope of r + - p pressure - r± eigenvectors of Jacobian matrix - R real line - S intersection of saturation triangle with circle of radius centered at (1, 0) - S intersection of saturation triangle with circle of radius centered at (0, 1) - s l, sv, sa saturations of phases (liquid, vapor, aqua) - tr J trace of matrix J - v l , v v , v a phase flow rates (Darcy velocities) - v T total flow rate - X, Y, Z entries of dev J - smooth closed curve inside saturation triangle - saturation triangle - l, v, a phase density times gravitational acceleration times resevoir dip angle - K total permeability - l, v, a three-phase relative permeabilities - lv>, la liquid phase relative permeabilities from two-phase data - l, v, a mobilities of phases - T total mobility - l Corey mobility - l, v, a phase viscosities - ± eigenvalues of Jacobian matrix - porosity Supported in part by National Science Foundation grant No. DMS-8701348, by Air Force Office of Scientific Research grant No. AFOSR-87-0283, and by Army Research Office grant No. DAAL03-88-K-0080.This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.  相似文献   

8.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

9.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

10.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

11.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

12.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

13.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

14.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

15.
In this paper, the flow of a visco-elastic liquid between two parallel plates has been studied when one plate is stationary and the other plate suddenly starts oscillating. Both finite Fourier sine transform and Laplace transform technique have been employed to solve the basic differential equations. The flow phenomenon has been characterized by the parameters, and and the effects of these on the flow characteristics have been studied through several graphs.Late professor of the department, who died in an accident on 7th July 1978.  相似文献   

16.
The flow of an adiabatic gas through a porous media is treated analytically for steady one- and two-dimensional flows. The effect on a compressible Darcy flow by inertia and Forchheimer terms is studied. Finally, wave solutions are found which exhibit a cut-off frequency and a phase shift between pressure and velocity of the gas, with the velocity lagging behind the pressure.Nomenclature A area of tube for one-dimensional flow - B drag coefficient associated with Forchheimer term - c speed of sound - M Mach number - p * gas pressure - p dimensionless gas pressure - s coordinate along the axis of tube - t * time variable - t dimensionless time variable - V* gas velocity in the porous media - V dimensionless gas velocity Greek Letters ratio of specific heat capacities - phase angle between gas pressure and velocity for linear waves - parameter indicating the importance of the inertia term - viscosity - p natural frequency of the porous media - * gas density - dimensionless gas density - parameter indicating the importance of the Forchheimer term - porosity of porous media - velocity potential - stream function  相似文献   

17.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

18.
Summary Compared to the similar pressure-distribution cone-and-plate apparatus of Adams and Lodge (4), the new apparatus' improvements include: temperature control of the cone (as well as the plate); increased stiffening of the frame; four (not three) pressuremeasuring holes in the cone/plate region; inclusion of a pressure-measuring hole on the axis under the cone truncation; exclusive use of a vertical free liquid boundary at the cone rim (without a sea of liquid). Temperature control of the rotating cone and of the fixed plate leads to acceptable temperature uniformity in the test liquid for working temperatures within 10°C or 20°C of ambient; the corresponding interval is about 1°C if the cone temperature control is abandoned. Pressure gradients measured using a Newtonian liquid agree with those calculated using Walters' eq. (3). For a viscoelastic liquid, after subtracting inertial contributions, pressure distributions measured at a given shear rate in the cone/plate region do not change when the gap angle is changed from 2° to 3°, showing that the effects of secondary flow are negligible. Values ofN 3 =N 1 + 2N 2 obtained from the gradients of these distributions are believed to be in error by not more than ±1 Pa, in favorable cases. The present most useful ranges are: 10 to 5000 Pa forN 3; 0.1 to 200 sec–1 for shear rate; up to 5 Pa s for viscosity; and 5 to 40°C for temperature. As an application, it is shown that adding 0.1% of a high molecular weight polyisobutylene to a 2% polyisobutylene solution doublesN 3 and has no detectable effect on the viscosity measured at low shear rates with a Ferranti-Shirley viscometer.
Zusammenfassung Im Vergleich zu dem ähnlichen Kegel-Platte-Gerät von Adams und Lodge (4) zur Messung der Druckverteilung wurden an dem neuen Gerät die folgenden Verbesserungen vorgenommen: Temperaturregelung an Kegel und Platte, Versteifung des Rahmens, vier (anstatt drei) Druckmeßlöcher im Kegel-Platte-Bereich, ein zusätzliches Druckmeßloch auf der Achse unter der Kegelstumpf-Deckfläche, ausschließliche Verwendung einer vertikalen freien Grenzfläche der Flüssigkeit am Kegelrand (ohne umgebenden Flüssigkeitssee). Die Temperaturregelung des rotierenden Kegels und der festen Platte führt zu einer ausreichenden Temperaturgleichförmigkeit in der Testflüssigkeit für Betriebstemperaturen, die höchstens um 10–20°C von der Umgebungstemperatur abweichen. Dieses Intervall beträgt dagegen nur etwa 1°C, wenn auf die Temperaturregelung am Kegel verzichtet wird. Für newtonsche Flüssigkeiten entsprechen die gemessenen Druckgradienten den mittels der Gleichung von Walters (3) berechneten. Für viskoelastische Flüssigkeiten zeigen sich bei der Änderung des Spaltwinkels von 2° auf 3° nach Abzug der Trägheitsbeiträge keine Änderungen der bei einer bestimmten Schergeschwindigkeit gemessenen Druckverteilung. Dies zeigt, daß Sekundärströmungseffekte vernachlässigbar sind. Es darf angenommen werden, daß die Werte vonN 3 =N 1 + 2N 2, die man aus den Gradienten dieser Verteilungen erhält, unter günstigen Umständen mit einem Fehler von nicht mehr als ±1 Pa behaftet sind. Gegenwärtig liegen die günstigsten Bereiche bei 10 bis 5000 Pa fürN 3, 0,1 bis 200 s–1 für die Schergeschwindigkeit, unterhalb von 5 Pa s für die Viskosität und 5 bis 40°C für die Temperatur. Als Anwendung wird gezeigt, daß ein Zusatz von 0,1% hochmolekularen Polyisobutylens zu einer 2%igen Polyisobutylenlösung den Wert vonN 3 verdoppelt, aber keinen erkennbaren Einfluß auf die (bei geringen Schergeschwindigkeiten mit einem Ferranti-Shirley-Viskosimeter gemessen) Viskosität hat.

udsf unidirectional shear flow - TCP truncated-cone and plate - N 1,N 2 1st and 2nd normal stress differences in udsf - N 3 N 1 + 2N 2 - : = A is defined by the equationA := B - P * hole pressurePw – Pm; Pw, Pm = pressures measured by flush transducer and by hole-mounted transducer - t time - , strain rate, shear rate - (P,t) covariant body metric tensor at particleP and timet - i , i covariant and contravariant udsf body base vectors (i = 1, 2, 3) - –1 inverse of - R, plate radius, cone/plate gap angle - r 0,h 0 radius and height of cone truncation - r,, spherical polar coordinates; cone axis = 0; plate surface = /2 - physical components of stress; for a tensile component - cone angular velocity - p on the plate = /2 - ,T, density, absolute temperature, viscosity - P 0.15 2(r 2R 2) (inertial contribution) [2.7] - P ve contribution [2.8] from flow perturbations of viscoelastic origin - r i i = 1,2,3,4; values ofr at centers of holes in cone/plate region - P i () pressure change recorded by transducerTi when cone angular velocity goes from zero to - 1/2 {P i ()+ P i (–)} (average for 2 senses of rotation) - rim pressure, from least-squares line through four points - Re Reynolds' number:R 2/ - (P,t)/t With 11 figures and 2 tables  相似文献   

19.
The equation for the flow of a liquid through a porous medium is either elliptic or parabolic which implies that a disturbance in pressure or head is transmitted with infinite velocity. This is unsatisfactory from a physical viewpoint, although not necessarily from a practical one. If Darcy's law is completed with an inertial term the flow equation becomes a strongly damped wave equation. The proposed additional term can be identified from experiments with confined flow and free surface flow when the pressure or head varies harmonically with time.Symbols c 0 characteristic speed - c 1 characteristic speed - c w characteristic speed - C auxiliary parameter - d diameter of a bead - E modulus of elasticity - F auxiliary function - h piezometric height - H height of groundwater table - I 0(x) modified Bessel function - I 1(x) modified Bessel function - k permeability - K hydraulic conductivity - L tube length or channel length - L 0 reference length - m auxiliary parameter - n porosity - p pressure - Q mass flux - r=(x, y, z) Cartesian coordinates - dimensionless Cartesian coordinates - r(p) tube radius - r 0 tube radius - R 0 tube radius - r p equivalent pore radius - t time - velocity vector - V volume - coefficient of compressibility - coefficient of compressibility - coefficient of compressibility - expansibility - relaxation time - dynamic viscosity - Poisson's ratio - density - dimensionless time - angular frequency  相似文献   

20.
Calculations of the three-dimensional boundary layer in an S shaped duct are performed with various – models. Three different near-wall models are used for the – model, of which one is using a new set of near-wall damping functions deduced from direct numerical simulations of turbulent channel flow available in the literature. The results show that it is possible to obtain damping functions giving better agreement, especially for and , with direct simulation data and experiments than with damping functions deduced from trial and error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号