首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this work, a novel Fe3O4/graphene oxide (GO) hybrid was prepared and its removal ability of cationic methylene blue dye from water was investigated. To improve the dispersability of Fe3O4/GO hybrid in water, GO was first modified by polyethylene glycol (PEG) via a click approach before deposition of Fe3O4 nanoparticles onto its surface. The successful modification of GO surface and the deposition of Fe3O4 nanoparticles were confirmed by transmission electron microscopy directly. The saturation magnetization of the resultant Fe3O4/GO hybrid is 7.8 eum/g. The adsorption capacities of Fe3O4/GO hybrid for methylene blue at 35 and 60°C were as high as 96.05 and 120.05 mg/g, respectively. Moreover, the Langmuir, Freundlich, and Temkin models are used to investigate the isothermal adsorption behavior of Fe3O4/GO hybrid.  相似文献   

2.
Three kinds of activated carbons were prepared using coconut-shells as carbon precursors and characterized by XRD, FT-IR and texture property test. The results indicate that the prepared activated carbons were mainly amorphous and only a few impurity groups were adsorbed on their surfaces. The texture property test reveals that the activated carbons displayed different texture properties, especially the micropore size distribution. The adsorption capacities of the activated carbons were investigated by adsorbing CH4, CO2, N2 and O2 at 25 ?C in the pressure range of 0-200 kPa. The results reveal that all the activated carbons had high CO2 adsorption capacity, one of which had the highest CO2 adsorption value of 2.55 mmol/g at 200 kPa. And the highest adsorption capacity for CH4 of the activated carbons can reach 1.93 mmol/g at 200 kPa. In the pressure range of 0-200 kPa, the adsorption capacities for N2 and O2 were increased linearly with the change of pressure and K-AC is an excellent adsorbent towards the adsorption separation of greenhouse gases.  相似文献   

3.
A novel core-shell magnetic Prussian blue-coated Fe3O4 composites (Fe3O4@PB) were designed and synthesized by in-situ replication and controlled etching of iron oxide (Fe3O4) to eliminate Cd (II) from micro-polluted water. The core-shell structure was confirmed by TEM, and the composites were characterized by XRD and FTIR. The pore diameter distribution from BET measurement revealed the micropore-dominated structure of Fe3O4@PB. The effects of adsorbents dosage, pH, and co-existing ions were investigated. Batch results revealed that the Cd (II) adsorption was very fast initially and reached equilibrium after 4 h. A pH of 6 was favorable for Cd (II) adsorption on Fe3O4@PB. The adsorption rate reached 98.78% at an initial Cd (II) concentration of 100 μg/L. The adsorption kinetics indicated that the pseudo-first-order and Elovich models could best describe the Cd (II) adsorption onto Fe3O4@PB, indicating that the sorption of Cd (II) ions on the binding sites of Fe3O4@PB was the main rate-limiting step of adsorption. The adsorption isotherm well fitted the Freundlich model with a maximum capacity of 9.25 mg·g−1 of Cd (II). The adsorption of Cd (II) on the Fe3O4@PB was affected by co-existing ions, including Cu (II), Ni (II), and Zn (II), due to the competitive effect of the co-adsorption of Cd (II) with other co-existing ions.  相似文献   

4.
A facile method of fabricating novel heat-generating membranes composed of electrospun polyurethane (PU) nanofibers decorated with superparamagnetic iron oxide nanoparticles (NPs) is reported. Electrospinning was used to produce polymeric nanofibrous matrix, whereas polyol immersion technique allowed in situ assembly of well-dispersed Fe3O4 NPs on the nanofibrous membranes without any surfactant, and without sensitizing and stabilizing reagent. The assembly phenomena can be explained by the hydrogen-bonding interactions between the amide groups in the PU matrix and the hydroxyl groups capped on the surface of the Fe3O4 NPs. The prepared nanocomposite fibers showed acceptable magnetization value of 33.12 emu/g, after measuring the magnetic hysteresis loops using SQUID. Moreover, the inductive heating property of electrospun magnetic nanofibrous membranes under an alternating current (AC) magnetic field was investigated. We observed a progressive increase in the heating rate with the increase in the amount of magnetic Fe3O4 NPs in/on the membranes. The present electrospun magnetic nanofibrous membrane may be a potential candidate as a novel heat-generating substrate for localized hyperthermia cancer therapy.  相似文献   

5.
The rabbit immunoglobulin antibodies (IgGs) have been immobilized onto nanobiocomposite film of chitosan (CH)–iron oxide (Fe3O4) nanoparticles prepared onto indium–tin oxide (ITO) electrode for detection of ochratoxin-A (OTA). Excellent film forming ability and availability of –NH2 group in CH and affinity of surface charged Fe3O4 nanoparticles for oxygen support the immobilization of IgGs. Differential pulse voltammettry (DPV) studies indicate that Fe3O4 nanoparticles provide increased electroactive surface area for loading of IgGs and improved electron transport between IgGs and electrode. IgGs/CH–Fe3O4 nanobiocomposite/ITO immunoelectrode exhibits improved characteristics such as low detection limit (0.5 ng dL−1), fast response time (18 s) and high sensitivity (36 μA/ng dL−1 cm−2) with respect to IgGs/CH/ITO immunoelectrode.  相似文献   

6.
7.
Pulse reaction showed that Co/Al2O3 catalyst was active for the high-temperature decomposition of CH4 and CO2. CH4 mainly was completely decomposed to give surface carbon, which could be inactivated quickly in the absence of enough O(ad) (arising from dissociation of CO2). CO2 was dissociatively adsorbed on Co(0) sites to give CO(ad) and O(ad), which was a slow step. Further decomposition of CO(ad) happened in the case of CO2 decomposition.  相似文献   

8.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

9.
采用“一锅法”制备了四氧化三铁/半胱氨酸(Fe3O4/Cys)磁性纳米微球,随后对Fe3O4/Cys进行亚氨基二乙酸(IDA)修饰得到Fe3O4/Cys/IDA磁性双功能化纳米微球。研究发现Fe3O4/Cys中的L-Cys是通过—SH基团接枝到Fe3O4表面的,随后IDA分子中的羧基与Fe3O4/Cys中的—NH2形成酰胺键,最终形成多支链多羧基的Fe3O4/Cys/IDA磁性纳米修复剂。基于修复剂表面短支链-长支链交替的多羧基结构,实现了羧基基团的高密度接枝。同时,Fe3O4/Cys/IDA磁性纳米微球对Pb2+、Cd2+、Cu2+、Co2+、Ni2+、Zn2+为专性吸附,而对Hg2+属于非专性吸附,且吸附重金属后得到的钝化产物均表现了良好的稳定性。另外,Fe3O4/Cys/IDA对重金属离子的吸附符合Langmuir模型,属于单层均相吸附,其吸附过程符合准二级动力学模型,最大吸附量为49.05 mg·g-1。  相似文献   

10.
张霞  陈莉  周春彬 《无机化学学报》2010,26(11):1934-1938
借助于PANI的还原性质,PANI/Fe2O3复合载体与AgNO3发生表面氧化还原反应,合成了Ag/PANI/Fe2O3复合纳米粒子。TEM和XRD结果表明,立方晶系纳米银的平均粒径10nm。FTIR结果表明,Ag与PANI及Fe2O3复合载体之间不存在化学键合作用,但由于PANI与Ag之间的电子相互作用,Ag/PANI/Fe2O3复合纳米粒子的FTIR吸收峰发生蓝移。Ag/PANI/Fe2O3复合纳米粒子对于间硝基苯磺酸钠的硼氢化钠还原反应表现出良好的催化活性,30min内间硝基苯磺酸钠的转化率达到86.77%。  相似文献   

11.
Adsorption isotherms of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on Hβand sodium exchanged β-zeolite (Naβ) were volumetrically measured at 273 and 303 K. The results show that all isotherms were of Brunauer type I and well correlated with Langmuir-Freundlich model. After sodium ions exchange, the adsorption amounts of three adsorbates increased, while the increase magnitude of CO2 adsorption capacity was much higher than that of CH4 and N2. The selectivities of CO2 over CH4 and CO2 over N2 enhanced after sodium exchange. Also, the initial heat of adsorption data implied a stronger interaction of CO2 molecules with Na+ ions in Naβ . These results can be attributed to the larger electrostatic interaction of CO2 with extraframework cations in zeolites. However, Naβ showed a decrease in the selectivity of CH4 over N2, which can be ascribed to the moderate affinity of N2 with Naβ. The variation of isosteric heats of adsorption as a function of loading indicates that the adsorption of CO2 in Naβ presents an energetically heterogeneous profile. On the contrary, the adsorption of CH4 was found to be essentially homogeneous, which suggests the dispersion interaction between CH4 and lattice oxygen atoms, and such interaction does not depend on the exchangeable cations of zeolite.  相似文献   

12.
A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co3O4 nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co3O4 nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co3O4-ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co3O4-macroporous carbon, Co3O4-reduced graphene oxide, and free Co3O4 nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm−2 mM−1 between 0 and 0.8 mM and 955.9 μA cm−2 mM−1 between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co3O4 nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co3O4 NPs in nanoscale spaces ensured intimate contact between Co3O4 nanocrystals and the conducting OMC matrix). The superior catalytic activity and selectivity make Co3O4-OMC very promising for application in direct detection of glucose.  相似文献   

13.
In this paper, 1-hexadecyl-3-methylimidazolium bromide (C16mimBr)-coated Fe3O4 magnetic nanoparticles (NPs) as an adsorbent of mixed hemimicelles solid-phase extraction was investigated for the preconcentration of two chlorophenols (CPs) in environmental water samples prior to HPLC with UV detection at 285 nm. The high surface area and excellent adsorption capacity of the Fe3O4 NPs after modification with C16mimBr were utilized adequately in the SPE process. By the rapid isolation of Fe3O4 NPs through placing a strong magnet on the bottom of beaker, the time-consuming preconcentration process of loading large volume sample in conventional SPE method with a column can be avoided. A comprehensive study of the adsorption conditions such as the zeta-potential of Fe3O4 NPs, added amounts of C16mimBr, pH value, standing time and maximal extraction volume were also presented. Under optimized conditions, two analytes of 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) were quantitatively determined. The method was then used to determine the two CPs in real environmental water samples. The accuracy of method was evaluated by recovery measurements on spiked samples. Good recovery results (74–90%) were achieved. It is important to note that satisfactory preconcentration factors and extraction recoveries for the two CPs were obtained with only a small amount of Fe3O4 NPs (40 mg) and C16mimBr (24 mg).  相似文献   

14.
用改进的Hummers法制备了氧化石墨烯,用乙二胺、乙二胺与丁二胺/己二胺混溶来改性氧化石墨烯。用水热法制备了Fe3O4,并用物理混合法制备了GO/Fe3O4/有机胺的三元复合体系。用透射电镜、扫描电镜、红外光谱、热重分析、X射线衍射、VSM和XPS等对所制得的样品进行了结构表征和性能测试,研究了三元复合粒子对结晶紫染料的吸附性能及影响结晶紫染料吸附效果的因素。结果表明:所制备的Fe3O4的平均粒径约为200 nm,粒径分布均匀;复合物中GO为典型的片状结构,GO及有机胺的掺杂没有影响Fe3O4的尖晶石结构;复合物为超顺磁性,Ms为53.0 emu·g~(-1)。吸附结果表明:石墨烯/Fe3O4/有机胺的三元复合材料对结晶紫染料的最大吸附量随浓度增大而增大,而吸附结晶紫染料的移除率却随结晶紫染料浓度增大而减小,并趋向一定值;乙二胺和己二胺混溶比例为5∶1的GO/Fe3O4复合材料吸附性能最佳:结晶紫浓度为400 mg·L~(-1),最大吸附量为164.3 mg·L~(-1)。  相似文献   

15.
The K2NiF4 phases LaSrCo0.5Fe0.5O4 and La1.2Sr0.8Co0.5Fe0.5O4, and their reduced forms LaSrCo0.5Fe0.5O3.75 and La1.2Sr0.8Co0.5Fe0.5O3.85, have been successfully prepared by solid-state reactions, followed by reduction in 10% H2/N2 in order to produce oxygen-deficient materials. All materials crystallize in a tetragonal K2NiF4 structure (space group I4/mmm) with Co and Fe randomly distributed over the B-sites of the structure. Mössbauer spectra have confirmed the trivalent state of Fe in these materials. In the reduced materials, oxide ion vacancies are confined to the equatorial planes of the K2NiF4 structure and the Co is present almost entirely as Co2+ ions; low-temperature neutron powder diffraction data reveal that these reduced phases are antiferromagnetically ordered with a tetragonal noncollinear arrangement of the moments. The Co3+ ions, present in stoichiometric LaSrCo0.5Fe0.5O4 and La1.2Sr0.8Co0.5Fe0.5O4, inhibit magnetic order and are assumed to be in the low-spin state.  相似文献   

16.
光动力疗法(PDT)作为一种迅速发展的传统替代疗法,在抗癌治疗中显示出巨大的潜力.为增强靶向性和提高光催化杀伤效率,本研究设计了一种新型光敏剂Fe3O4-TiO2磁性纳米粒.在不同外磁场下,考察其在可见光和紫外光激发下对肝癌细胞的杀伤效应.同时利用流式细胞术检测纳米Fe3O4-TiO2对肝癌细胞凋亡率、细胞周期和线粒体膜电位的影响.根据纳米Fe3O4-TiO2和肝癌细胞的作用方式探讨其抗癌机制.结果表明,可见光激发纳米Fe3O4-TiO2可以杀伤癌细胞,且其杀伤效率与紫外光激发下无明显差别.此外,Fe3O4-TiO2比TiO2具有更高的细胞摄取率,从而使其具有更高的选择性和光催化杀伤效率.其作用机制是光催化纳米Fe3O4-TiO2产生活性氧ROS抑制癌细胞,然后通过阻滞细胞周期G0/G1期,降低线粒体膜电位,线粒体去极化,最终诱导细胞凋亡.  相似文献   

17.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

18.
利用自制As2O3连续发生装置,在固定床反应器上研究了金属氧化物CaO、Fe2O3、Al2O3对煤燃烧高温烟气中气相砷的吸附特性。600~900 ℃温度的吸附实验结果表明,金属氧化物CaO、Fe2O3吸附剂对气相As2O3的吸附以化学吸附为主,随着吸附温度的升高,吸附量与吸附效率逐渐减小;3种金属氧化物的气相固砷能力依次为Fe2O3 >CaO >Al2O3;研究了气相砷浓度对吸附剂固砷量的影响特性,当气相砷体积浓度在4.5×10-6~13.5×10-6变化时,不会有吸附饱和的现象发生,当吸附剂种类一定时,吸附效率仅与吸附温度有关,对于不同气相砷浓度保持相同的吸附温度可以获得相同的吸附效率。  相似文献   

19.
We developed a facile synthetic route of porous cobalt oxide (Co3O4) nanorods via a microemulsion-based method in combination with subsequent calcination process. The porous structure was formed by controlled decomposition of the microemulsion-synthesized precursor CoC2O4 nanorods without destruction of the original morphology. The as-prepared Co3O4 nanorods, consisting of small nanoparticles with diameter of 80–150 nm, had an average diameter of 200 nm and a length of 3–5 μm. The morphology and structure of synthesized samples were characterized by transmission electron microscopy and scanning electron microscopy. The phase and composition were investigated by X-ray powder diffraction and X-ray photoelectron spectroscopy. The optical property of Co3O4 nanorods was investigated. Moreover, the porous Co3O4 nanorods exhibited high electrochemical performance when applied as cathode materials for lithium-ion batteries, which gives them good potential applications.  相似文献   

20.
Conducting polyaniline/Cobaltosic oxide (PANI/Co3O4) composites were synthesized for the first time, by in situ deposition technique in the presence of hydrochloric acid (HCl) as a dopant by adding the fine grade powder (an average particle size of approximately 80 nm) of Co3O4 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD). The composition and the thermal stability of the composites were investigated by TG-DTG. The results suggest that the thermal stability of the composites is higher than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and nano-Co3O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号