首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
By using EPR measurements of radiation-induced radicals it is possible to utilize human fingernails to estimate radiation dose after-the-fact. One of the potentially limiting factors in this approach is the presence of artifacts due to mechanically induced EPR signals (MIS) caused by mechanical stress during the collection and preparation of the samples and the so-called background (non-radiation) signal (BKS). The MIS and BKS have spectral parameters (shape, g-factor and linewidth) that overlap with the radiation-induced signal (RIS) and therefore, if not taken into account properly, could result in a considerable overestimation of the dose. We have investigated the use of different treatments of fingernails with chemical reagents to reduce the MIS and BKS. The most promising chemical treatment (20 min with 0.1 M dithiothreitol aqueous solution) reduced the contribution of MIS and BKS to the total intensity of EPR signal of irradiated fingernails by a factor of 10. This makes it potentially feasible to measure doses as low as 1 Gy almost immediately after irradiation. However, the chemical treatment reduces the intensity of the RIS and modifies dose dependence. This can be compensated by use of an appropriate calibration curve for assessment of dose. On the basis of obtained results it appears feasible to develop a field-deployable protocol that could use EPR measurements of samples of fingernails to assist in the triage of individuals with potential exposure to clinically significant doses of radiation.  相似文献   

2.
There is now an increased need for accident dosimetry due to the increased risk of significant exposure to ionizing radiation from terrorism or accidents. In such scenarios, dose measurements should be made in individuals rapidly and with sufficient accuracy to enable effective triage. Electron paramagnetic resonance (EPR) is a physical method of high potential for meeting this need, providing direct measurements of the radiation-induced radicals, which are unambiguous signatures of exposure to ionizing radiation. For individual retrospective dosimetry, EPR in tooth enamel is a proven and effective technique when isolated teeth can be obtained. There are some promising developments that may make these measurements feasible without the need to remove the teeth, but their field applicability remains to be demonstrated. However, currently it is difficult under emergency conditions to obtain tooth enamel in sufficient amounts for accurate dose measurements. Since fingernails are much easier to sample, they can be used in potentially exposed populations to determine if they were exposed to life-threatening radiation doses. Unfortunately, only a few studies have been carried out on EPR radiation-induced signals in fingernails, and, while there are some promising aspects, the reported results were generally inconclusive. In this present paper, we report the results of a systematic investigation of the potential use of fingernails as retrospective radiation dosimeters.  相似文献   

3.
There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.  相似文献   

4.
Electron Paramagnetic Resonance (EPR) spectroscopy with tooth enamel is a widely used method of dosimetry. The accuracy of EPR tooth dosimetry depends on the spectrum processing procedure, the quality of which, in its turn, relies on instrumental noise and the signals from impurities. This is especially important in low-dose evaluation. The current paper suggests a method to estimate the accuracy of a specific spectrum processing procedure. The method is based on reconstruction of the radiation-induced signal (RIS) from a simulated spectrum with known RIS intensity. The Monte Carlo method was used for the simulations. The model of impurity and noise signals represents a composite residual spectrum (CRS) obtained by subtraction of the reconstructed RIS and the native background signal (BGS) from enamel spectra measured in HMGU (Neuherberg, Germany) and IMP (Yekaterinburg, Russia). The simulated spectra were deconvoluted using a standard procedure. The method provides an opportunity to compare the simulated “true” RIS with reconstructed values. Two modifications of the EPR method were considered: namely, with and without the use of the reference Mn2+ signals. It was observed that the spectrum processing procedure induces a nonlinear dose response of the reconstructed EPR amplitude when the height of the true RIS is comparable with the amplitudes of noise-like random splashes of CRS. The area of nonlinearity is below the limit of detection (DL). The use of reference Mn2+ signals can reduce the range of nonlinearity. However, the impact of the intensities of CRS random signals on nonlinearity is two times higher than the one observed when the reference signals were not used. The reproducibility of the software response is also dependent on both the amplitude of the CRS and the use of a reference signal, and it is also two times more sensitive to the amplitude of the CRS. In most EPR studies, all of the data are used, even those for which the dose value is lower than the DL. This study shows that low doses evaluated with the help of linear dose–response can be significantly overestimated. It is recommended that linear dose response calibration curves be constructed using only data above the DL. Data below the DL should be interpreted cautiously.  相似文献   

5.
Human finger- and toenails have been tested with an X-band EPR technique for different conditions of nail storage. The main radiation-induced signal at g = 2.005 demonstrated good stability if the samples were stored in a vacuum at room temperature after nail harvesting and irradiation. On the basis of this phenomenon, a new protocol is proposed to use the nails as possible emergency EPR dosimeters. The dosimetry protocol was tested on laboratory-exposed samples and demonstrated the ability to recover doses in the region 0–10 Gy with an estimated uncertainty of approximately 0.3–0.4 Gy for doses in the range <2 Gy, increasing to 0.6–0.7 Gy for doses in the range 5–10 Gy.  相似文献   

6.
In vivo electron paramagnetic resonance (EPR) tooth dosimetry provides a means for non-invasive retrospective assessment of personal radiation exposure. While there is a clear need for such capabilities following radiation accidents, the most pressing need for the development of this technology is the heightened likelihood of terrorist events or nuclear conflicts. This technique will enable such measurements to be made at the site of an incident, while the subject is present, to assist emergency personnel as they perform triage for the affected population. At Dartmouth Medical School this development is currently being tested with normal volunteers with irradiated teeth placed in their mouths and with patients who have undergone radiation therapy. Here we describe progress in practical procedures to provide accurate and reproducible in vivo dose estimates.  相似文献   

7.
8.
This paper reviews recent research on the application of the physical dosimetry techniques of electron paramagnetic resonance (EPR) and luminescence (optically stimulated luminescence, OSL, and thermoluminescence, TL) to determine radiation dose following catastrophic, large-scale radiological events. Such data are used in dose reconstruction to obtain estimates of dose due to the exposure to external sources of radiation, primarily gamma radiation, by individual members of the public and by populations. The EPR and luminescence techniques have been applied to a wide range of radiological studies, including nuclear bomb detonation (e.g., Hiroshima and Nagasaki), nuclear power plant accidents (e.g., Chernobyl), radioactive pollution (e.g., Mayak plutonium facility), and in the future could include terrorist events involving the dispersal of radioactive materials. In this review we examine the application of these techniques in ‘emergency’ and ‘retrospective’ modes of operation that are conducted on two distinct timescales. For emergency dosimetry immediate action to evaluate dose to individuals following radiation exposure is required to assess deterministic biological effects and to enable rapid medical triage. Retrospective dosimetry, on the other hand, contributes to the reconstruction of doses to populations and individuals following external exposure, and contributes to the long-term study of stochastic processes and the consequential epidemiological effects. Although internal exposure, via ingestion of radionuclides for example, can be a potentially significant contributor to dose, this review is confined to those dose components arising from exposure to external radiation, which in most studies is gamma radiation.The nascent emergency dosimetry measurement techniques aim to perform direct dose evaluations for individuals who, as members of the public, are most unlikely to be carrying a dosimeter issued for radiation monitoring purposes in the event of a radiation incident. Hence attention has focused on biological or physical materials they may have in their possession that could be used as surrogate dosimeters. For EPR measurements, in particular, this includes material within the body (such as bone or tooth biopsy) requiring invasive procedures, but also materials collected non-invasively (such as clippings taken from finger- or toenails) and artefacts within their personal belongings (such as electronic devices of which smart phones are the most common). For luminescence measurements, attention has also focused on components within electronic devices, including smartphones, and a wide range of other personal belongings such as paper and other polymer-based materials (including currency, clothing, bank cards, etc.). The paper reviews progress made using both EPR and luminescence techniques, along with their current limitations.For the longer-established approach of retrospective dosimetry, luminescence has been the most extensively applied method and, by employing minerals found in construction materials, it consequently is employed in dosimetry using structures within the environment. Recent developments in its application to large-scale radiation releases are discussed, including the atomic bomb detonations at Hiroshima and Nagasaki, fallout from the Chernobyl reactor and atmospheric nuclear bomb tests within the Semipalatinsk Nuclear Test Site and fluvially transported pollution within the Techa River basin due to releases from the Mayak facility. The developments made in applying OSL and TL techniques are discussed in the context of these applications. EPR measurements with teeth have also provided benchmark values to test the dosimetry models used for Chernobyl liquidators (clean-up workers), residents of Semipalatinsk Nuclear Tests Sites and inhabitants of the Techa River basin.For both emergency and retrospective dosimetry applications, computational techniques employing radiation transport simulations based on Monte Carlo code form an essential component in the application of dose determinations by EPR and OSL to dose reconstruction problems. We include in the review examples where the translation from the physical quantity of cumulative dose determined in the sampled medium to a dose quantity that can be applied in the reconstruction of dose to individuals and/or populations; these take into account the source terms, release patterns and the movements of people in the affected areas. One role for retrospective luminescence dosimetry has been to provide benchmark dose determinations for testing the models employed in dose reconstruction for exposed populations, notably at Hiroshima and Nagasaki. The discussion is framed within the context of the well-known radiation incidents mentioned above.  相似文献   

9.
Electron paramagnetic resonance (EPR) dosimetry of tooth enamel in X-band has been established as a suitable method for individual reconstruction of doses 0.1 Gy and higher. The objective was to demonstrate the feasibility of using Q-band EPR in small biopsy tooth enamel samples to provide accurate measurements of radiation doses. Q-band spectra of small (<10 mg) irradiated samples of dentine and bone were studied to investigate the possibility of using Q-band EPR for dose measurements in those materials if there are limited amounts of enamel available, and there is no time for the chemical sample preparation required for accurate X-band measurements in dental enamel. Our results have shown that Q-band provides accurate measurements of radiation doses higher than 0.5 Gy in tooth enamel biopsy samples as small as 2 mg. Q-band EPR spectra in powdered dentine and bone demonstrated significantly higher resolution and sensitivity than in conventional X-band measurements.  相似文献   

10.
利用电子顺磁共振(electron paramagnetic resonance,EPR)在体测量人牙齿可以实现无损伤地快速评估人体辐射剂量,具有实际应用价值.本文针对EPR在体测量牙齿剂量的应用特点,研制了专用调制磁场驱动装置,包括功率放大器、调制磁场激励线圈、调制频率设定模块、感应型调制幅度显示模块等.功率放大器采用脉冲功率放大方式取代传统的线性放大方式,用多N-MOSFET管H桥电路,功率容量大、效率高、结构简单,且调制频率设定自如.实验结果表明:(1)此装置可在大于9 cm磁极间距的中心样品位置产生调制幅度为0~0.9 mT的调制磁场,调制频率为10~100 kHz;(2)用该装置与EPR在体测量谱仪配合使用,可以明显观测到1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)样品谱线调制增宽过程以及辐射诱发的整体牙齿中的自由基信号,验证了该装置的高调制效率和实用性.  相似文献   

11.
研制了X波段在体剂量检测专用EPR谱仪的数据采集与控制系统,利用阿尔泰USB2812数据采集卡作为控制卡,在LabVIEW图形化编程开发环境中进行程序开发,实现了扫场电源的控制、微波模的显示、微波功率的控制和EPR信号的采集等功能. 数据处理程序可实现存储数据的查询、谱线基线校正和积分等基本功能,为下一步开展牙齿剂量试验研究提供了平台.  相似文献   

12.
In vivo electron paramagnetic resonance (EPR) has been very useful for studies in animals, and these results suggest that there are some very attractive potential applications in human subjects. In this article, we describe our rationale for the clinical application of in vivo EPR, some of the principal technical challenges, the initial results in human subjects, and our evaluation of the areas where in vivo EPR is likely to play an important clinical role in the near future. The most obvious area of very high potential for clinical applications is tissue oximetry, where in vivo EPR can provide repeated and accurate measurements of tissue pO2, a type of measurement that cannot be obtained by other techniques. Oximetry is capable of providing clinicians with information that can impact directly on diagnosis and therapy, especially for peripheral vascular disease, oncology, and wound healing. The other area of great immediate importance is the ability of in vivo EPR to measure clinically significant exposures to ionizing radiation after the fact, which may occur due to accidents, terrorist activity, or nuclear war. The results obtained already from human subjects demonstrate the feasibility of the use of in vivo EPR for measurements in human subjects. We anticipate that in vivo EPR will play a vital role in the clinical management of various pathologies in the years to come.  相似文献   

13.
In vivo EPR tooth dosimetry is a more challenging problem than in vitro EPR dosimetry because of several potential additional sources of variation associated with measurements that are made in the mouth of a living subject. For in vivo measurement a lower RF frequency is used and, unlike in the in vitro studies, the tooth cannot be processed to optimize the amount and configuration of the enamel that is measured. Additional factors involved with in vivo measurements include the reproducibility of positioning the resonator on the surface of the tooth in the mouth, irregular tooth geometry, and the possible influence of environmental noise. Consequently, in addition to using the theoretical and empirical models developed for analyzing data from measurements of teeth in vitro, other unconventional and more robust methods of dose reconstruction may be needed. The experimental parameter of interest is the peak-to-peak amplitude of the spectrum, which is correlated to the radiation dose through a calibration curve to derive the reconstructed dose. In this study we describe and compare the results from seven types of computations to measure the peak-to-peak amplitude for estimation of the radiation induced signal. The data utilized were from three sets of in vivo measurements of irradiated teeth. Six different teeth with different doses were placed in the mouth of a volunteer in situ and measurements of each tooth were carried out on three different days. The standard error of dose prediction (SEP) is used as a figure of merit for quantifying precision of the reconstruction. We found that many of the methods gave fairly similar results, with the best error of prediction resulting from a computation based on a Lorentzian line model whose center field corresponds to the known parameter of the radiation-induced EPR spectra of teeth, with corrections from a standard sample that was measured as part of the data acquisition scheme. When the results from the three days of measurement were pooled, the SEP decreased dramatically, which suggests that one of the principal sources of variation in the data is the ability to precisely standardize the measurements conditions within the mouth. There are very plausible ways to accomplish improvements in the existing procedures.  相似文献   

14.
Overmodulation of electron paramagnetic resonance (EPR) lines is routinely used in EPR oximetry in order to increase the signal-to-noise ratio and thus to improve the accuracy with which the line width of a spin probe can be measured. For a known probe type, the line width is easily translated into the oxygen partial pressure. A standard EPR spectrometer uses the analog phase-sensitive detection (PSD) to demodulate the EPR signal. PSD imposes the restriction that only one spectrum is measured at a time, which is normally the first-harmonic EPR line. Information about EPR signals centered at the other harmonics of the modulation frequency is irreversibly destroyed by PSD. The question is raised whether this information can be utilized for EPR oximetry, for overmodulation enhances the second- and the other harmonic spectra, so that they approach the first-harmonic spectrum in intensity. To find an answer, numerical simulation and experimental measurements have been conducted. The experiment required modification of the detection scheme, so that all EPR-related information in the overmodulated signal is preserved. This permits measuring of the multiharmonic EPR spectrum, which when fitted to a set of the corresponding theoretical lines produces more accurate results in comparison with the standard overmodulation method.  相似文献   

15.
Starting with the assumption that a device to detect unplanned radiation exposures is technically superior to current technology, we examine the additional stakeholders and processes that must be considered to move the device from the lab into use. The use is to provide reliable information to triage people for early treatment of exposure to ionizing radiation that could lead to the Acute Radiation Syndrome. The scenario is a major accident or terrorist event that leaves a large number of people potentially exposed, with the resulting need to identify those to treat promptly or not. In vivo EPR dosimetry is the exemplar of such a technique.Three major areas are reviewed: policy considerations, regulatory clearance, and production of the device. Our analysis of policy-making indicates that the current system is very complex, with multiple significant decision-makers who may have conflicting agendas. Adoption of new technologies by policy-makers is further complicated because many sources of expert input already have made public stances or have reasons to prefer current solutions, e.g., some may have conflicts of interest in approving new devices because they are involved with the development or adoption of competing techniques. Regulatory clearance is complicated by not being able to collect evidence via clinical trials of its intended use, but pathways for approval for emergency use are under development by the FDA. The production of the new device could be problematical if the perceived market is too limited, particularly for private manufacturers; for in vivo EPR dosimetry the potential for other uses may be a mitigating factor.Overall we conclude that technical superiority of a technique does not in itself assure its rapid and effective adoption, even where the need is great and the alternatives are not satisfactory for large populations. Many important steps remain to achieve the goals of approval and adoption for use.  相似文献   

16.
A specific EPR tooth enamel dosimetry is discussed which appears to have genuine utility in retrospective dosimetry. The sample preparation technology, digital form of the native background and radiation-induced signals, and their separation from the experimentally observed spectrum are discussed. The possibility of dose estimation from the single initial EPR spectrum of randomly irradiated teeth and the uncertainty of such evaluation are discussed. The method has been used for dose reconstruction of a group of people irradiated due to the Chernobyl accident, and some results are presented.  相似文献   

17.
为测试在体EPR牙齿辐射剂量测量专用磁场装置,开展了初步性能试验. 针对扫描磁场非线性造成谱线的畸变情况,对在体EPR专用磁场装置性能进行了改进,给出了一种校正扫描磁场非线性的实现方法,通过对扫描磁场驱动电流进行反向刻度校正,可有效改善EPR谱线的畸变情况. 初步试验进一步证明了水平磁场在体测量方案的可行性,磁场装置性能的改进为实现X波段EPR辐射剂量在体测量向实际应用奠定基础.  相似文献   

18.
Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.  相似文献   

19.
The potential of electron paramagnetic resonance (EPR) methods to study the correlation of the states of two noninteracting spins prepared in the singlet state (Einstein-Podolsky-Rosen-Bohm [EPRB] pairs) is discussed. EPR methods with a selective excitation of spins in the EPRB pairs allow one, in principle, to reveal this correlation of spin states if single-spin measurements are performed. However, it is illustrated that the conventional ensemble EPR experiments, when the average values of projections of the spin moments are observables, fail in studying the correlation of spins in EPRB pairs. An exploitation of the EPR phenomenon to study the correlation of spins for ensembles of EPRB pairs needs some modifications of the experimental approach: either the indirect detection of EPR signals (new observables) should be used or the EPRB pairs should be transferred to another state when the spin-spin interaction becomes essential, while EPR observables manifest the spin correlation in the precursor EPRB pair state. In this respect it appears that in spin chemistry many results were already obtained which demonstrate that it is a reality that two spins might occupy the “entangled” (correlated) state, when there is no interaction between them. The results obtained in spin chemistry confirm the quantum mechanical predictions for spin-correlated pairs of spins which can be considered as a realization of EPRB pairs.  相似文献   

20.
Free radicals play important roles in many physiological and pathological pathways in biological systems. These free radicals can be detected and quantified by their EPR spectra. The measured EPR spectra are often mixtures of pure spectra of several different free radicals and other chemicals. Blind source separation can be applied to estimate the pure spectra of interested free radicals. However, since the pure EPR spectra are often not independent of each other, the approach based on independent component analysis (ICA) cannot accurately extract the required spectra. In this paper, a novel sparse component analysis method for blind source separation, which exploits the sparsity of the EPR spectra, is presented to reliably extract the pure source spectra from their mixtures with high accuracy. This method has been applied to the analysis of EPR spectra of superoxide, hydroxyl, and nitric oxide free radicals, for both simulated data and real world ex vivo experiment. Compared to the traditional self-modeling method and our previous ICA-based blind source separation method, the proposed sparse component analysis approach gives much better results and can give perfect separation for mixtures of superoxide spectrum and hydroxyl spectrum in the ideal noise-free case. This method can also be used in other similar applications of quantitative spectroscopy analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号