首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A cationic polymerization of formaldehyde which gave a high molecular weight polymer was studied in liquid carbon dioxide at 20–50°C. In the polymerization without any catalyst both the rate of polymerization and the molecular weight of the resulting polymer increased rapidly with a decrease in the loading density of the monomer solution to the reaction vessel, and also increased with an increase in the initial monomer concentration. From these results it was concluded that the initiating species could be ascribed to an impurity contained in the monomer solution. Both the rate of polymerization and the degree of polymerization of the polymer also increased with rising temperature. The carboxylic acid added acted as a catalyst in the polymerization because of increase in the polymer yield, the molecular weight of polymer formed, and the number of moles of polymer chain with increasing dissociation constant of acid used. It was concluded that the polymerization in liquid carbon dioxide proceeded by a cationic mechanism. Methyl formate had no influence on the polymerization, but methanol and water acted as a chain-transfer agent.  相似文献   

2.
The effects of oxygen on the γ-radiation-induced polymerization of ethylene were studied at a temperature of 30°C.; the pressure was 400 kg./cm.2, the dose rate was 1.9 × 105 rad/hr.; and oxygen content was from 1–2000 ppm. The main product was solid polymer, and no liquid product was found. The gaseous products were hydrogen, acetylene, higher hydrocarbons, carbon dioxide, aldehydes, and acids. Several kinds of carbonyls similar to those formed in γ-ray oxidized polyethylene were observed in the polymer. The polymer yield and the degree of polymerization decreased markedly with increasing oxygen content, while the amount of carbonyls in the polymer increased. The number of moles of polymer chain and the amounts of hydrogen and acetylene were found to be almost independent of the oxygen content. The polymerization of pure ethylene was not affected by carbon dioxide and formic acid. On addition of acetaldehyde, the polymer yield and the degree of polymerization decreased markedly, while the number of moles of polymer chain increased. In the polymerization of ethylene containing oxygen, both the rate of oxygen consumption and the carbonyl content of the polymer increased, while the inhibition period decreased by the addition of acetaldehyde. It was found that the degree of polymerization after the inhibition period is almost independent of the reaction time in the presence of acetaldehyde, while it increases with the time in the absence of acetaldehyde.  相似文献   

3.
Stereospecific polymerization of methacrylonitrile with diethylmagnesium has been studied. Polymerization temperature has an important effect on polymerization. The conversion, stereoregularity, and intrinsic viscosity of the polymer increased significantly with increasing polymerization temperature. Stereoregularity of the polymer improved with increasing the polymerization time and the monomer concentration, but it is independent of the catalyst concentration. Intrinsic viscosity of the crystalline polymer increased with increasing monomer concentration but is independent of the polymerization time and the catalyst concentration. It is suggested that two mechanisms are involved in this polymerization: coordinated anionic polymerization to from the crystalline polymer, and probably conventional anionic polymerization to form the amorphous polymer. It is found that crystalline polymer can also be obtained in homogeneous phase such as in tetrahydrofuran solvent.  相似文献   

4.
A modified-polypropene-supported Ziegler catalyst was prepared using polypropene containing a small amount of poly(7-methyl-1,6-octadiene) as a starting polymer for bromination, lithiation, and reaction with TiCl4. The polymerization of ethene was carried out using the catalyst with Al(C2H5)3 in toluene at 60°C up to 100 h. The polymer yield increased linearly with polymerization time, which indicates that the active sites of the modified-polypropene-supported Ziegler catalyst are practically stable without deactivation even for 100 h and are able to propagate further polymerization of ethene.  相似文献   

5.
The effects of hydrogen on both degree and rate of polymerization have been determined for continuous, gas phase polymerization of propylene at industrial reactor conditions. The effects of molecular weight using three modifications of TiCl3–DEAC catalyst are correlated by Natta's equation, using number average molecular weights determined from polymer melt flow rate. The coefficients of Natta's equation, when correlated against temperature in Arhenius plots, imply that the most active catalyst is diffusion controlled because the activation energy is abnormally low. Hydrogen increases overall polymerization rate. Rate is correlated by modification to Natta's equation that accounts for hypothesized increase in active sites on catalyst surface due to adsorbed molecular hydrogen.  相似文献   

6.
Fourteen titanium alkoxides were synthesized for comparison of their catalytic properties in the bulk and solution polymerization of lactide (LA). In bulk polymerizations, they are effective catalysts in terms of polymer yield and molecular weight. Titanatranes gave polylactides with significantly increased molecular weight over more extended polymerization times, and those with five-membered rings afforded polymers in higher yields and with larger molecular weights than their six-membered ring counterparts. Steric hindrance of the rings was found to significantly affect polymer yields. Increased heterotactic-biased poly(rac-LA) was formed as the number of chlorine atoms increased in TiCl(x)(O-i-Pr)(4)(-)(x). In solution polymerizations, titanium alkoxides catalyzed controlled polymerizations of LA, and end group analysis demonstrated that an alkoxide substituent on the titanium atom acted as the initiator. That polymerization is controlled under our conditions was shown by the linearity of molecular weight versus conversion. A tendency toward formation of heterotactic-biased poly(rac-LA) was observed in the solution polymerizations. The rate of ring-opening polymerization (ROP) and the molecular weight of the polymers are greatly influenced by the substituents on the catalyst, as well as by factors such as the polymerization temperature, polymerization time, and concentration of monomer and catalyst.  相似文献   

7.
Enzyme-catalyzed ring-opening polymerization of a cyclic phosphate (ethylene isopropyl phosphate) was achieved in bulk by using porcine pancreas lipase (PPL) as a catalyst. It was found that the higher the polymerization temperature and lipase concentration, the faster is the polymerization rate. The yield is not very sensitive to the lipase concentration, while the molecular weight decreases with increasing lipase concentration. From 13C and 1H NMR analysis, the polymer has a phosphoric acid group at one end and a hydroxyl group at the other. The 31P{1H} NMR spectrum indicated that some chain transfer might take place in the polymerization.  相似文献   

8.
The polymerization of isobutyl vinyl ether by vanadium trichloride in n-heptane was studied. VCl3 ? LiCl was prepared by the reduction of VCl4 with stoichiometric amounts of BuLi. This type of catalyst induces stereospecific polymerization of isobutyl vinyl ether without the action of trialkyl aluminum to an isotactic polymer when a rise in temperature during the polymerization was depressed by cooling. It is suggested that the cause of the stereospecific polymerization might be due to the catalyst structure in which LiCl coexists with VCl3, namely, VCl3 ? LiCl or VCl2 ? 2LiCl as a solid solution in the crystalline lattice, since VCl3 prepared by thermal decomposition of VCl4 and a commercial VCl3 did not produce the crystalline polymer and soluble catalysts such as VCl4 in heptane and VCl3 ? LiCl in ether solution did not yield the stereospecific polymer. It was found that some additives, such as tetrahydrofuran or ethylene glycol diphenyl ether, to the catalyst increased the stereospecific polymerization activity of the catalysts. Influence of the polymerization conditions such as temperature, time, monomer and catalyst concentrations, and the kind of solvent on the formed polymer was also examined.  相似文献   

9.
The direct polymerization of deprotonated acidic monomers in aqueous solutions was achieved via surface‐confined atom transfer radical polymerization (SC‐ATRP) to produce surface‐tethered polyelectrolyte brushes. Layers of poly(itaconic acid), poly(methacrylic acid), and sodium poly(styrene sulfonate) were grown by SC‐ATRP from self‐assembled initiator monolayers of [BrC(CH3)2COO(CH2)11S]2 on gold substrates. The polymer layers were characterized with variable‐angle ellipsometry and external‐reflection Fourier transform infrared spectroscopy. Without intervention, atom transfer radical polymerization catalysts were deactivated by complexation with the deprotonated acidic monomers, disproportionation, and dissociation during the polymerization of these monomers in water; the result was the cessation of polymer growth. The addition of an alkali salt to the reaction media suppressed catalyst deactivation, allowing polymer layers to increase in thickness linearly for longer periods of time with respect to salt‐free conditions. This result suggested an improved degree of polymerization control. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 566–575, 2007  相似文献   

10.
The anionic graft polymerization of methacrylonitrile on potassium starch alkoxide in dimethyl sulfoxide was studied. Factors affecting the graft polymerization such as monomer and alkoxide concentrations as well as temperature were investigated. The yield of the graft polymers was found to increase with alkoxide concentration, and it was possible to incorporate all the starch into graft polymer. On increasing the monomer concentration the graft polymer yield increased to a flat maximum. At the higher monomer concentrations, the efficiency of monomer in giving graft polymer decreased due to increased homopolymer formation. The composition of the graft polymers varied with increasing monomer concentration, graft polymers having about 40–65% of grafted starch were obtained. With increasing temperature (10 to 60°C), the yield of graft polymer decreased, there was more homopolymerization, but the amount of starch incorporated in the graft remained constant. The structure of the graft polymers was deduced from hydrolysis of the starch backbone of the graft polymers by dilute mineral acid and the determination of the molecular weights of the grafted side chains, and from oxidation by periodic acid, which showed the extent of grafting at the secondary hydroxyl groups. These results have shown that by anionic graft polymerization it is possible to obtain graft polymers having more densely packed grafted side chains of relatively low molecular weights than those obtained previously by free-radical graft polymerization.  相似文献   

11.
贾志奇  赵永祥 《分子催化》2012,26(2):135-140
在水-有机溶剂复合体系中,以P123为结构导向剂水热直接合成了锆掺杂介孔固体酸催化剂(Zr-PHTS),运用XRD、TEM、N2吸附-脱附以及NH3-TPD、Py-FTIR等手段对催化剂进行了表征.结果表明,在硅锆摩尔比20-100考察范围内,所得Zr-PHTS样品均显示有序二维六方晶相结构,具有以L酸为主的中等强度的酸性中心;随着锆引入量的变化Zr-PHTS的比表面积仅显示少量的变化,孔径维持在9.8 nm;在四氢呋喃聚合反应中Zr-PHTS显示出较好的催化活性,硅锆摩尔比30的样品表现出最佳的催化性能,聚合物收率达到40.4%,数均分子量2 135,推测催化剂表面酸性和孔结构决定了催化剂对四氢呋喃的聚合性能.  相似文献   

12.
The effects of acetylene on the γ-radiation-induced polymerization of ethylene were studied from the viewpoint of kinetics. The experiments were carried out under a pressure of 150–400 kg/cm2; the temperature was 30°C; the dose rates were 2.7 × 104 and 1.1 × 105 rad/hr; the acetylene content was 0–2.21%. Both the polymer yield and the molecular weight increased acceleratively with the reaction pressure in the polymerization containing 0.18% acetylene. The yield increased almost proportionally with the dose rate, and the molecular weight was found to be almost independent of the dose rate in the polymerization containing 2.21% acetylene. The polymerization rate and the molecular weight increased with reaction time, but the increment decreased with increasing acetylene content. The degree of increase in the molecular weight also decreased with increasing time. These results were analyzed by using a graphical evaluation method for kinetics, and the effects of acetylene on each elementary step in the polymerization discussed.  相似文献   

13.
The polymer–polymer composites bearing polyethylene and starch are obtained by polymerization filling. The polymerization of ethylene is carried out using catalyst system [TiCl4 + (С2H5)2AlCl] under mild conditions. It is found that the catalyst activity in the presence of a biopolymer is higher than that without the filler. The polyethylene matrix has a molecular mass of 1.26–1.40 M and features a melting point of 138–140°C, a high enthalpy, and a degree of crystallinity of 60–70%. Reduction in the decomposition temperature of the polymer–polymer composites and in the rate of mass loss compared to the unfilled polyethylene and biopolymers is detected. The stress-strain characteristics of the polymer matrix are improved; in particular, the elastic modulus and relative elongation at break are increased. The photooxidative degradation of the composites under the action of sunlight and UV radiation is studied. According to the data of IR spectroscopy, the polymer–polymer composites possess resistance to photooxidative aging 2–3 times lower than the unfilled polyethylene. The polymer–polymer composites subjected to UV radiation reveal a high intensity of growth of microorganisms: the degree of biofouling is up to four points.  相似文献   

14.
Postirradiation polymerization of 2,3-dimethylbutadiene in deoxycholic acid canal complexes was studied under various reaction conditions. The polymerization was carried out in degassed sealed tubes since the atmosphere had a large effect upon the polymer yield. Addition of 2,3-dimethylbutane led to a sharp drop in polymer yield, while hydroquinone showed little effect on the polymerization. The rate of postirradiation polymerization was found to increase with increase in reaction temperature and irradiation dose. The apparent activation energy was obtained as 13.7 kcal/mole in a temperature range between ?14 and 30°C. Existence of living free radicals having a long lifetime, the gradual change of the monomer into the polymer within the canals, and the effective spatial control in canals are discussed on the basis of the postirradiation polymerization behavior, nature of the adducts, and the structure of the polymers.  相似文献   

15.
The anionic graft polymerization of methyl methacrylate on the potassium alkoxide derivative of starch or dextrin in DMSO was studied. The effects of monomer and alkoxide concentrations as well as temperature were investigated. The yield of graft polymer increased with increasing alkoxide concentration. With increasing monomer concentration and with increasing temperature the extent of homopolymer formation increased. The composition of the graft polymers was found to depend on the reaction conditions. Graft polymers having about 10–40% poly(methyl methacrylate) were obtained. There were quantitative differences in yield of isolated graft polymer between starch and dextrin and these were ascribed to differences in the solubility properties of the carbohydrates. Evidence on the structure of the graft polymers and on the mechanism of the graft polymerization was obtained from acid hydrolysis of the graft polymers and determination of the molecular weights of the cleaved side chains.  相似文献   

16.
The addition of a small amount of monomer strongly decreased the clouding temperature of nonionic emulsifier (Tween 20). The clouding temperature of the Tween 20 aqueous solution was independent of emulsifier concentration but it strongly varied in the presence of monomer. The decreased cloud temperature was attributed to the penetration of monomer molecules into the interfacial layer that increased the flocculation of microdroplets (monomer-swollen micelles). The surface tension of homogenized ((mini)emulsion) butyl acrylate aqueous emulsion was much smaller than that estimated at or above CMC of Tween 20. The polymerization rate vs. conversion curve of the (mini)emulsion deviates from the three rate intervals typical for the emulsion polymerisation. The shape of the rate-conversion curve reminds more the four rate intervals curve. Interval 2 is overlapped with the initial maximal rate and rate shoulder at higher conversion. The initial maximal polymerization rate (Rp,max,1) is attributed to the abrupt increase in polymer particles, the polymerization under monomer saturated condition and emulsifier containing peroxide groups (Twperoxid 20). The rate of emulsion polymerization of BA initiated by ammonium peroxodisulphate (APS) is ca. by one order of magnitude larger than that of blank polymerization (without APS). The second maximal rate (rate shoulder) can result from the gel effect. The more pronounced increase in Rp,max,1 with Tw 20 concentration supports the presence of peroxide groups. The slight dependence of Rp,max,2 on [Tw 20] for both APS and DBP (dibenzoyl peroxide) is discussed in terms of the depressed radical entry rate into the close packed surface later of polymer particles. The low activation energy is attributed to the decreased barrier for entering radicals into the polymer particles with increasing temperature. This is more pronounced with the accumulation of covalently bound emulsifier moieties (resulting from Twperoxid 20) at the particle surface. The ratio of the final number of polymer particles to the initial number of monomer droplets (Np/Ndrop) promotes the partial monomer droplet nucleation. The dye approach indicates that the degree of depletion of monomer droplets decreases from the classical emulsion polymerization to the polymerization in pre-homogenized emulsions and the emulsion polymerization with a prolonged-emulsification interval.  相似文献   

17.
An unbridged metallocene catalyst bis(2,4,6-trimethylindenyl)zirconium dichloride (Cat-I) was synthesized. Propylene polymerization was carried out with this catalyst and the results were compared with bis(2,4,7-trimethylindenyl)zirconium dichloride (Cat-II) to investigate the steric effects of substituents on the catalytic activity and microstructure of the resulting polymer. The differences of the methyl group position in Cat-I and Cat-II have apparent effect on the polymerization behavior. Comparable activity of the catalyst was observed at 0 and 25 °C polymerization temperature and the microstructure of the polymer was almost the same.  相似文献   

18.
Isobutyl vinyl ether has been polymerized under conditions well known to yield isotactic polymer, viz., with boron trifluoride etherate at 78°C. in a nonpolar hydrocarbon diluent. A particular mixed solvent ratio and previous dissolution of catalyst enabled the polymerization to proceed homogeneously at the beginning. By following the temperature rise in an initially thermostatted system, we showed that the progress of the reaction eventually proceeded via a homogeneous phase to a gellike phase. Isotactic polymer is shown to be produced in both steps by a mechanism of slow chain propagation.  相似文献   

19.
Enzymatic oxidative polymerization of p-alkylphenols using horseradish peroxidase as catalyst has been carried out in two polymerization solvent systems: a mixture of phosphate buffer (pH 7) and 1,4-dioxane, and a reverse micellar solution, yielding powdery polymeric materials. The polymer yield was much dependent upon the type of alkyl group in the monomer as well as the solvent type. In case of the polymerization of umbranched alkylphenols in the aqueous 1,4-dioxane, the polymer yield increased with increasing chain length of the alkyl group from 1 to 5, and the yield of the polymer from hexyl or heptylphenol was almost the same as that of the pentyl derivative. The relationship between the type of substituent and the polymer yield in the reverse micellar system was different from that in the aqueous 1,4-dioxane; the highest yield was achieved from ethylphenol. The resulting polymers had molecular weight of several thousands. The polymer was estimated to be composed from a mixture of phenylene and oxyphenylene units from IR analyses. TG measurement exhibited that the polymer had relatively high thermal stability. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1453–1459, 1997  相似文献   

20.
Highly active catalysts for low pressure ethylene polymerization are formed when chromocene, bis (benzene)- or bis (cumene)-chromium or tris- or bis (allyl)-chromium compounds are deposited on high surface area silica-alumina or silica supports. Each catalyst type shows its own unique behavior in preparation, polymerization, activity, isomerization, and response to hydrogen as a chain transfer agent. The arene chromium compounds require an acidic support (silicaalumina) or thermal aging with silica to form a highly active catalyst. At 90°C polymerization temperature arene chromium catalysts produced high molecular weight polyethylene and showed, in contrast to supported chromocene catalysts, a much lower response to hydrogen as a chain transfer agent. An increase in polymerization temperature caused a significant decrease in polymer molecular weight. Addition of cyclopentadiene to supported bis (cumene)-chromium catalyst led to a new catalyst which showed a chain transfer response to hydrogen typical of a supported chromocene catalyst. Polymerization activity with tris- or bis (allyl)-chromium appears to depend on the divalent chromium content in the catalyst. Changes in the silica dehydration temperature of supported allyl chromium catalyst have a significant effect on the resulting polymer molecular weight. High molecular weight polymers were formed with catalysts that were prepared using silica dehydration temperatures below about 400°C. Dimers, trimers, and oligomers of ethylene were usually formed with catalysts that were prepared on silica dehydrated much above 400°C. The order of activity of the different types of catalysts was chromocene/silica > chromocene/silica-alumina > bis (arene)-chromium/silica-alumina ? allyl chromium/silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号