首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Plutonium and other actinides were determined in human autopsy tissues of occupationally exposed workers who were registrants of the United States Transuranium and Uranium Registries (USTUR). In this study, Pu was purified and isolated from Am, U and Th, after drying and wet-ashing of the tissues, and the addition of238Pu as a radiotracer. After electrodeposition onto vanadium planchets the239+240Pu activity was determined by alpha-spectrometry. A fission track method was developed to determine239Pu in the presence of238Pu and240Pu, using LexanTM polycarbonate detectors. Combining the two techniques allowed the determination of the240Pu/239Pu activity and atom ratios. Data from selected USTUR cases are presented.  相似文献   

2.
Photofission and electrofission cross sections for fissionable isotopes of uranium, thorium, plutonium and other actinides have been known for several decades. Published data on electrofission and photofission reactions for energies lower than 60 MeV indicate that the238U cross sections range from a fraction of one mbarn up to about 2.0 mbam for the first of these reactions, and for the second is about 150 nbarn. However, the use of photofission and electrofission as analytical tools to measure uranium, thorium, plutonium and other fissionable actinides is still quite recent. This work examines the potential use of photofission and electrofission to measure thorium, uranium, neptunium, plutonium, americium and curium in environmental and biological samples.Work partially supported by FINEP, CNPq, FAPERJ (ASP), and FAPESP (JDTAN).  相似文献   

3.
A new fecal analysis method that dissolves plutonium oxide was developedat the Westinghouse Savannah River Site. Diphonix Resin . (Eichrom Technologies),is used to pre-concentrate the actinides from digested fecal samples. A rapidmicrowave digestion technique is used to remove the actinides from the DiphonixResin ., which effectively extracts plutonium and americium from acidic solutionscontaining hydrofluoric acid. After resin digestion, the plutonium and americiumare recovered in a small volume of nitric acid that is loaded onto small extractionchromatography columns, TEVA Resin and TRU Resin (Eichrom Technologies). Themethod enables complete dissolution of plutonium oxide and provides high recoveryof plutonium and americium with good removal of thorium isotopes such as 228Th.  相似文献   

4.
A method using DGA resin (N,N,N′,N′-tetra-n-octyldiglycolamide on an inert support) was developed for the rapid analysis of actinides in urine samples. Samples acidified with HCl to 4 M were loaded directly (without digestion) onto a DGA column. Actinides were stripped simultaneously, α-sources were prepared by co-precipitation with NdF3. Americium, plutonium and uranium were separated with acceptable high recoveries (40–80%). The americium, plutonium and uranium content of 100–200 ml urine samples was determined within 24 h with detection limits as low as 0.01 Bq l?1. Based on model experiments using 14C-spiked urea, it was proven that high urea content can affect americium separation deleteriously due to irreversible fixing of americium on DGA resin.  相似文献   

5.
Many advanced reprocessing schemes under development are aimed at co-processing and co-conversion of actinides, unlike current reprocessing plants that produce separate uranium and plutonium products. The most well developed option for the co-conversion stage is probably oxalate co-precipitation, followed by the thermal co-conversion to a mixed oxide product. It is thus envisaged that future processes will avoid separation of plutonium from uranium and instead allow part of the uranium to flow with the plutonium, resulting in co-precipitation as the oxalate, and finally co-conversion to a mixed uranium-plutonium oxide (MOX), which can be fabricated into recycled nuclear fuel for further energy generation.The co-crystallisation of uranium (IV) and plutonium (III) into a single oxalate structure ensures the homogenous distribution of the two actinides at the molecular scale. The joint conversion of uranium and plutonium to the oxide form makes it possible to remove the complicated step of blending and grinding the two distinct oxide powders, as currently employed for the purposes of MOX fuel fabrication. This concept can also be extended to other actinides, including minor actinides from partitioning processes such as SANEX (Selective Actinide Extraction) and GANEX (Grouped Actinide Extraction) processes or even a thorium containing product from recycle of thorium based fuels.A selection of UxTh1-x(C2O4)2 solids at varying concentrations of uranium and thorium were prepared by oxalate co-precipitation. Uranium (VI) was conditioned electrochemically at -0.7 V to uranium (IV), in the presence of hydrazine. The reduced uranium (IV) in nitric acid was mixed with thorium nitrate solutions at different concentration ratios with oxalic acid. The mixed tetravalent uranium-thorium oxalate solid products have been characterised by Raman and IR spectroscopies. The influence of thorium substituted into the uranium oxalate structure was evaluated. Several vibrational modes were found to be affected by the variation in ionic radius appearing to be metal sensitive and therefore, provide the initial indication in the evaluation of the chemical composition.  相似文献   

6.
The activity of plutonium and americium has been measured in teeth from two persons involved in an incident 25 years ago at Eurochemic. Assuming that the alpha activity of the teeth is representative of the activity of the skeleton an estimate of the systemic body burden is given and compared to the value obtained from the late urinary excretion using the Leggett-Eckerman excretion model. The results are compared with some data from US Transuranium and Uranium Registries.  相似文献   

7.
The possibility of using di-(2-ethylhexyl)-phosphoric acid (HDEHP) in solvent extraction for the separation of neptunium, plutonium, americium and curium from large amounts of uranium was studied. Neptunium, plutonium, americium and curium (as well as uranium) were extracted from HNO3, whereafter americium and curium were back-extracted with 5M HNO3. Thereafter was neptunium back-extracted in 1M HNO3 containing hydroxylamine hydronitrate. Finally, plutonium was back-extracted in 3M HCl containing Ti(III). The method separates238Pu from241Am for α-spectroscopy. For ICP-MS analysis, the interferences from238U are eliminated: tailing from238U, for analysis of237Np, and the interference of238UH+ for analysis of239Pu. The method has been used for the analysis of actinides in samples from a spent nuclear fuel leaching and radionuclide transport experiment.  相似文献   

8.
A procedure is presented to provide sequential determination of isotopic strontium, thorium, plutonium, uranium, and americium in a single biological sample. The method begins with digestion and dissolution of the sample. Tracers and/or carriers are added to the sample for the purpose of chemical yield monitoring. Strontium is first separated from the actinides and from most of the interfering constituents of the sample by precipitation as carbonates. Strontium isotopes are purified, and 89Sr and 90Sr are measured by gas proportional counting. Actinides are separated and purified by ion exchange chromatography, co-precipitated with neodymium fluoride, filtered, and counted by alpha-particle spectrometry.  相似文献   

9.
Summary In the analysis of biological samples with sub ng/g uranium concentrations, pre-concentration has been shown to improve the detection limit for the determination of uranium. Recovery corrected kinetic phosphorescence analysis (KPA) combines pre-concentration and separation of uranium by anion-exchange from human tissues dissolved in 6M HCl, with the radiochemical yield determined by alpha-spectrometry, using 232U as a tracer. Total uranium is determined by KPA after correction for chemical recovery. Twenty-one randomly selected dissolved tissue samples from the United States Transuranium and Uranium Registries (USTUR) Case 0242 were chosen for comparative analyses. The set of samples included dissolved bone and soft tissues. Uranium concentrations for seven of the samples had not been previously reported. Direct KPA could not be used to determine uranium concentrations of five unreported tissues. Three of these tissues had uranium concentrations at or below the KPA LQ value of 0.028 ng/ml and two tissues had known matrix interferences. All seven of the unreported tissues were successfully analyzed by recovery corrected KPA; concentrations ranged from 9 to 1380 ng per tissue, including those that could not be analyzed by direct KPA due to matrix problems. Recovery corrected KPA gives results similar to direct KPA where matrix interferences and low detection limits are not encountered. A comparison of the direct method of KPA versus recovery corrected KPA shows marked improvement for the determination of uranium in samples that heretofore either uranium was not detected or the sample had to be drastically diluted to minimize matrix effects in order to measure uranium.  相似文献   

10.
A new procedure for the radiochemical measurements of thorium, uranium and plutonium in atmospheric samples is described. Analysis involves coprecipitation of these actinides with iron hydroxide from a 40-to 50-dm3 sample of rainwater, followed by radiochemical separation and purification procedures by the use of ion exchange chromatography (Dowex AG1×8) and solvent extraction. The new procedure enables one to determine the isotopes of thorium, uranium and plutonium, which are found in rainwater at extremely low concentrations, with a chemical yield ranging from 60 to 80%.  相似文献   

11.
For more than 25 years, the United States Transuranium and Uranium Registries (USTUR) and the Dosimetry Registry of the Mayak Industrial Association (DRMIA) of the Russian Federation have, each independently, collected tissues at autopsy from workers with potential or confirmed body burdens of actinide elements resulting from occupational exposures. Tissues, thus obtained, were radiochemically analyzed for actinides for the purpose of evaluating the biokinetics of these elements in the human body. Scientists of these two organizations have recently begun a collaborative research program to compare, combine and analyze the data to verify or refine biokinetic models needed for radiation dosimetry.  相似文献   

12.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

13.
Synthetic inorganic exchangers exhibit good thermal and radiation stability. Thorium oxalate precipitate shows potential for co-precipitation of plutonium and americium from oxalate supernatant generated during plutonium oxalate precipitation. In the present study, efforts were made to prepare thorium oxalate precipitate to be used for column operation. Distribution ratios were determined to optimize conditions for sorption of plutonium and americium on thorium oxalate from nitric acid + oxalic acid solutions with composition similar to that of oxalate supernatant. Column experiments were also performed to evaluate the sorption capacity of thorium oxalate for plutonium and americium from the same medium. The result showed that, thorium oxalate prepared in 1.75M HNO3 at 70 °C is suitable for column operations. These studies showed that plutonium and americium could be simultaneously removed from aqueous solutions with composition similar to plutonium oxalate waste using glass column packed with thorium oxalate and these nuclides could be recovered by eluting with 3M HNO3.  相似文献   

14.
Summary Determination of Uranium and Thorium in Phosphate Rocks by a Combined Ion-Exchange — Spectrophotometric Method A selective anion-exchange separation and Spectrophotometric method has been developed for the determination of uranium and thorium in phosphate rocks. About 0.2 g of rock sample is decomposed with nitric acid. Uranium and thorium are adsorbed by anion-exchange on an Amberlite CG 400 (NO3 ) column from the sample solution adjusted to 2.5M in magnesium nitrate and 0.1M in nitric acid. Uranium and thorium are eluted consecutively with 6.6M nitric acid and 0.1M nitric acid, respectively. Uranium and thorium in the respective effluents are determined spectrophotometrically with Arsenazo III. Results are quoted on uranium and thorium in NBS standard phosphate rock and others.  相似文献   

15.
An on-line method developed for separating plutonium and americium was developed. The method is based on the use of HPLC pump with three analytical chromatographic columns. Plutonium is reduced throughout the procedure to trivalent oxidation state, and is recovered in the various separation steps together with americium. Light lanthanides and trivalent actinides are separated with TEVA resin in thiocyanate/formic acid media. Trivalent plutonium and americium are pre-concentrated in a TCC-II cation-exchange column, after which the separation is performed in CS5A ion chromatography column by using two different eluents. Pu(III) is eluted with a dipicolinic acid eluent, and Am(III) with oxalic acid eluent. Radiochemical and chemical purity of the eluted plutonium and americium fractions were ensured with alpha-spectrometry.  相似文献   

16.
Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of Pu-isotopes in urine samples using anion exchange resin and 236Pu tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of plutonium along with calcium phosphate. Separation of Pu was carried out by Amberlite, IRA-400, anion exchange resin. Pu-fraction was electrodeposited and activity estimated using tracer recovery by alpha spectrometer. Twenty routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 74–96% with a mean and standard deviation of 85 and 6% respectively.  相似文献   

17.
Bioassay technique is used for the estimation of actinides present in the body based on the excretion rate of body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha-spectrometry requires pre-concentration of large volumes of urine. This paper deals with standardization of analytical method for the determination of U-isotopes in urine samples using anion-exchange resin and 232U tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of uranium along with calcium phosphate. Separation of U was carried out by Amberlite, IRA-400, anion-exchange resin. U-fraction was electrodeposited and activity estimated using tracer recovery by alpha-spectrometer. Eight routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range of 51% to 67% with a mean and standard deviation of 60% and 5.4%, respectively.  相似文献   

18.
Bioassay technique is used for the estimation of actinides present in the body based on their excretion rate through body fluids. For occupational radiation workers urine assay is the preferred method for monitoring of chronic internal exposure. Determination of low concentrations of actinides such as plutonium, americium and uranium at low level of mBq in urine by alpha spectrometry requires pre-concentration of large volumes of urine. This article deals with standardization of analytical method for the determination of 241Am isotope in urine samples using Extraction Chromatography (EC) and 243Am tracer for radiochemical recovery. The method involves oxidation of urine followed by co-precipitation of americium along with calcium phosphate. This precipitate after treatment is further subjected to calcium oxalate co-precipitation. Separation of Am was carried out by EC column prepared by PC88-A (2-ethyl hexyl phosphonic acid 2-ethyl hexyl monoester) adsorbed on microporous resin XAD-7 (PC88A-XAD7). Am-fraction was electro-deposited and activity estimated using tracer recovery by alpha spectrometer. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical recovery was obtained in the range 44–60% with a mean and standard deviation of 51 and 4.7% respectively.  相似文献   

19.
Hydrated iron oxide or amorphous-Fe2O3·3.5 H2O (HFeO), hydrated titanium oxide (HTiO) and hydrated thorium oxide (HThO) were synthesized and their applicability for the decontamination of intermediate level liquid wastes (ILLW) was tested. The sorption of a few actinides like plutonium and americium on HFeO, 137Cs and 106Ru on HTiO and 90Sr on HThO was investigated as a function of pH, time and loading capacity of the hydrous oxide with metal ions. The influence of the total dissolved salt content was also monitored. Some of these parameters influenced the sorption behavior significantly. The radiation stability of these inorganic sorbents were studied by irradiating them up to 48 Mrad. Adsorbed actinides and fission products were successfully eluted from HFeO and from the mix-bed of HTiO and HThO by 0.5M nitric acid.The authors wish to thank Shri R. D. Changarani, Chief Superintendent NRG Facilities and Shri P. K. Dey, Head FRD for their valuable advice and constant support.  相似文献   

20.
Hydrated iron oxide or amorphous-Fe2O3·3.5 H2O (HFeO), hydrated titanium oxide (HTiO) and hydrated thorium oxide (HThO) were synthesized and their applicability for the decontamination of intermediate level liquid wastes (ILLW) was tested. The sorption of a few actinides like plutonium and americium on HFeO, 137Cs and 106Ru on HTiO and 90Sr on HThO was investigated as a function of pH, time and loading capacity of the hydrous oxide with metal ions. The influence of the total dissolved salt content was also monitored. Some of these parameters influenced the sorption behavior significantly. The radiation stability of these inorganic sorbents were studied by irradiating them up to 48 Mrad. Adsorbed actinides and fission products were successfully eluted from HFeO and from the mix-bed of HTiO and HThO by 0.5M nitric acid.The authors wish to thank Shri R. D. Changarani, Chief Superintendent NRG Facilities and Shri P. K. Dey, Head FRD for their valuable advice and constant support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号