首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper, we investigate the Hyers–Ulam stability of the following quartic equation $$\begin{array}{ll} {\sum\limits^{n}_{k=2}}\left({\sum\limits^{k}_{i_{1}=2}}{\sum\limits^{k+1}_{i_{2}=i_{1}+1}} \ldots {\sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}}\right)\\ \quad\times f \left({\sum\limits^{n}_{i=1,i \neq i_{1},\ldots,i_{n-k+1}}} x_{i}-{\sum\limits^{n-k+1}_{r=1}}x_{i_{r}}\right) + f \left({\sum\limits^{n}_{i=1}}x_{i}\right)\\ \quad-2^{n-2}{\sum\limits^{}_{1 \leq{i} \leq{j} \leq{n}}}(f(x_{i} + x_{j}){+f(x_{i} - x_{j})){+2^{n-5}(n - 2){\sum\limits^{n}_{i=1}}f(2x_{i})}} = \theta \end{array} $$ $({n \in \mathbb{N}, n \geq 3})$ in β-homogeneous F-spaces.  相似文献   

2.
Using the fixed point method, we prove the Hyers–Ulam stability of double derivations associated with the following additive mapping: $$\begin{array}{ll}{\sum\limits^{n}_{k=2}\left(\sum\limits^{k}_{i_{1}=2} \sum\limits^{k+1}_{i_{2}=i_{1}+1}\dots \sum\limits^{n}_{i_{n-k+1}=i_{n-k}+1}\right)}\\ {\quad \times f\left( \sum\limits^{n}_{i=1, i\neq i_{1},\dots,i_{n-k+1} } x_{i}\right.\left.-\sum\limits^{n-k+1}_{ r=1}x_{i_{r}}\right)+f\left(\sum\limits^{n}_{ i=1} x_{i}\right) =2^{n-1} f(x_{1})}\end{array}$$ for a fixed positive integer n with n ≥ 2.  相似文献   

3.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

4.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

5.
Let ?? be a real number satisfying 0?<????<?n, ${0\leq t<\alpha, \alpha{^\ast}(t)=\frac{2(n-t)}{n-\alpha}}$ . We consider the integral equation $$u(x)=\int\limits_{{\mathbb{R}^n}}\frac{u^{{\alpha{^\ast}(t)}-1}(y)}{|y|^t|x-y|^{n-\alpha}}\,dy,\quad\quad\quad\quad\quad\quad\quad(1)$$ which is closely related to the Hardy?CSobolev inequality. In this paper, we prove that every positive solution u(x) is radially symmetric and strictly decreasing about the origin by the method of moving plane in integral forms. Moreover, we obtain the regularity of solutions to the following integral equation $$u(x)=\int\limits_{{\mathbb{R}^n}}\frac{|u(y)|^{p}u(y)}{|y|^t|x-y|^{n-\alpha}}\, dy\quad\quad\quad\quad\quad\quad\quad(2)$$ that corresponds to a large class of PDEs by regularity lifting method.  相似文献   

6.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

7.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

8.
We study the existence of weak solutions for a nonlinear elliptic system of Lane-Emden type $$\left\{\begin{array}{ll} -\Delta u \; = \; {\rm sgn}(v)|v|^{p-1} & {\rm in}\;\mathbb{R}^N, \\ -\Delta v \; = \; -\rho(x){\rm sgn}(u)|u|^{\frac{1}{p-1}} + f(x, u) & {\rm in}\;\mathbb{R}^N, \\ u, v \to 0 \quad {\rm as} \quad |x| \to +\infty, \end{array}\right.$$ by means of the Mountain Pass Theorem and some compact imbeddings in weighted Sobolev spaces.  相似文献   

9.
В статье изучается по ведение суммы лакуна рного тригонометрическог о ряда при приближени и к некоторой фиксиров анной произвольной т очке. Первая половина рабо ты посвящена изложен ию метода исследования локаль ных свойств суммы лакунарного ря да, разработанного ав тором. Вторая половина рабо ты посвящена приложе ниям этого метода. Здесь в частно сти, получаются необходи мые и достаточные усл овия для интегрируемости сум мы лакунарного ряда с весом при широк их условиях на вес. При ведем соответствующий рез ультат. Пусть?р(x) — сумма ряда \(a + \sum\limits_{n = 1}^\infty {a_n \cos (\lambda _n x + \psi _n )} \) , гдеа, а n ,λ n ,ψ n — действительные числа,εa n /2 <∞,a n ≧0,λ n >0 приn≧1 и \(\mathop {\inf }\limits_{n \geqq 1} \lambda _{n + 1} /\lambda _n > 1\) . При этих условиях функция?(х) определена почти всю ду. Пустьр>0 иω(х) — положительная неуб ывающая функция, определенная при все хх>0, которая при некот оромC>0 удовлетворяет услов ию:ω(2x)≦ ≦Cω(х) при всехх>0. Тогда имеет место Теорема. Для того, чтоб ы интеграл \(\int\limits_{ + 0} {|\varphi (x)|^p \frac{{dx}}{{\omega (x)}}} \) сходился, необходимо и достато чно, чтобы сходились все р яды $$\begin{gathered} \sum\limits_{n = 1}^\infty {D_n (\sum\limits_{k = n}^\infty {a_k^2 } )^{p/2} ,} \sum\limits_{n = 2}^\infty {D_n |a_n + \sum\limits_{k = 1}^{n - 1} {a_k \cos } \psi _k |^p ,} \hfill \\ \sum\limits_{n = 2}^\infty {D_n (pj)|\sum\limits_{k = 1}^{n - 1} {a_k \lambda _k^j \cos (\psi _k + \pi j/2)} |^p ,} j = 1,2,..., \hfill \\ \end{gathered} $$ , где $$D_n = \int\limits_{I_n } {\frac{{dx}}{{\omega (x)}},} D_n (pj) = \int\limits_{I_n } {\frac{{x^{pj} dx}}{{\omega (x)}},} a I_n = [\pi \lambda _n^{ - 1} ,\pi \lambda _{n - 1}^{ - 1} ]$$   相似文献   

10.
An analogue of Sidon??s theorem is presented for series of the form $$\sum\limits_{k = 1}^\infty {\sum\limits_{n = 0}^\infty {a_{k,n} } } \cos m_k x\cos ny,$$ where the coefficients a k,n have a constant sign for any fixed k.  相似文献   

11.
We consider the following prescribed curvature problem for polyharmonic operator: $$\left\{\begin{array}{llll} D_{m} u = \tilde{K}(y)|u|^{m^*-2}u\; {\rm in}\; \mathbb{S}^N\\ u \quad\; >0\qquad\quad\quad\quad\quad{\rm on}\; \mathbb{S}^N\\ u \quad\; \in H^{m}(\mathbb{S}^N), \end{array} \right.$$ where ${m^*=\frac{2N}{N-2m}, N\geq 2m+1,m \in \mathbb{N}_{+}, \tilde{K}}$ is positive and rationally symmetric, ${\mathbb{S}^N}$ is the unit sphere with the induced Riemannian metric ${g=g_{\mathbb{S}^N},}$ and D m is the elliptic differential operator of 2m order given by $$\begin{array}{lll}D_m={\prod\limits_{k=1}^m}{\left(-\Delta_g+\frac{1}{4}(N-2k)(N+2k-2)\right)}\end{array}$$ where Δ g is the Laplace-Beltrami operator on ${\mathbb{S}^N}$ . We will show that problem (P) has infinitely many non-radial positive solutions, whose energy can be arbitrary large.  相似文献   

12.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

13.
The generalized weighted mean operator ${\mathbf{M}^{g}_{w}}$ is given by $$[\mathbf{M}^{g}_{w}f](x) = g^{-1} \left( \frac{1}{W(x)} \int \limits_{0}^{x}w(t)g(f(t))\,{\rm d}t \right),$$ with $$W(x) = \int \limits_{0}^{x} w(s) {\rm d}s, \quad {\rm for} \, x \in (0, + \infty),$$ where w is a positive measurable function on (0, + ∞) and g is a real continuous strictly monotone function with its inverse g ?1. We give some sufficient conditions on weights u, v on (0, + ∞) for which there exists a positive constant C such that the weighted strong type (p, q) inequality $$\left( \int \limits_{0}^{\infty} u(x) \Bigl( [\mathbf{M}^{g}_{w}f](x) \Bigr)^{q} {\rm d}x \right)^{1 \over q} \leq C \left( \int \limits_{0}^{\infty}v(x)f(x)^{p} {\rm d}x \right)^{1 \over p}$$ holds for every measurable non-negative function f, where the positive reals p,q satisfy certain restrictions.  相似文献   

14.
In the present paper, by applying variant mountain pass theorem and Ekeland variational principle we study the existence of multiple nontrivial solutions for a class of Kirchhoff type problems with concave nonlinearity $$ \left\{\begin{array}{ll} -(a + b \int\nolimits_{\Omega} |\nabla{u}|^{2})\triangle{u} = \alpha(x)|u|^{q-2}u + f(x, u),\quad{\rm in}\;\Omega,\\ u = 0,\;\quad\qquad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad{\rm on}\;\partial\Omega, \end{array} \right. $$ A new existence theorem and an interesting corollary of four nontrivial solutions are obtained.  相似文献   

15.
We establish a result on the existence of a positive solution for the following class of degenerate quasilinear elliptic problems: $$(P)\quad \quad \left\{\begin{array}{ll}{-\Delta_{ap}u + V(x)|x|^{-ap^*} |u|^{p-2} u=K(x)f(x, u), {\rm in} \, R^N,}\\ {u > 0, {\rm in} \, R^N , \, u \in \mathcal{D}^{1,p}_a}{(R^N)},\end{array}\right. $$ denotes the Hardy-Sobolev’s \({{-\Delta_{ap}u = - div(|x|^{-ap}|\nabla u|^{p-2} \nabla u), 1 < p < N, -\infty < a < \frac{N-p}{p}, a \leq e \leq a+1, d=1+a-e}}\) , and \({{p^* := p^*(a,e)=\frac{Np}{N-dp}}}\) denotes the Hardy-Sobolev’s critical exponent, V and K are bounded nonnegative continuous potentials, K vanishes at infinity, and f has a subcritical growth at infinity. The technique used here is the variational approach.  相似文献   

16.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

17.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

18.
The goal of the present paper is to investigate some new stability results by applying the alternative fixed point of generalized quadratic functional equation $$\begin{array}{ll}f\left(\sum\limits_{i=1}^{n}a_ix_i\right)+{\sum\limits_{i=1}^{n-1}}{\sum\limits_{j=i+1}^{n}}\left[f(a_ix_i+a_jx_j)+2f(a_ix_i-a_jx_j)\right]\\ \qquad \quad = (3n-2){\sum\limits_{i=1}^{n}}a^2_{i}f(x_{i})\end{array}$$ in β–Banach modules on Banach algebras, where ${a_{1},\dots,a_{n}\in \mathbb{Z}{\setminus}\{0\}}$ and some ${\ell\in\{1 , 2 ,\dots, n-1\},}$ a ? ?≠ ±1 and a n ?=?1, where n is a positive integer greater or at least equal to two.  相似文献   

19.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

20.
We prove that the inequality $$-\frac{1}{2}\leq {\sum\limits_{k=1}^{n}} \left( \frac{{\rm cos}(2kx)}{2k - 1}+\frac{{\rm sin}((2k - 1)x)}{2k} \right)$$ holds for all natural numbers n and real numbers x with ${x \in [0, \pi]}$ . The sign of equality is valid if and only if n =  1 and x =  π /2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号