首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

2.
Let N ≥ 5 and \({{\mathcal{D}}^{2,2} (\mathbb{R}^N)}\) denote the closure of \({C_0^\infty (\mathbb{R}^N)}\) in the norm \({\|u\|_{{\mathcal{D}}^{2,2} (\mathbb{R}^N)}^2 := \int\nolimits_{\mathbb{R}^N} |\Delta u|^2.}\) Let \({K \in C^2 (\mathbb{R}^N).}\) We consider the following problem for ? ≥ 0: $$(P_\varepsilon) \left\{\begin{array}{llll}{\rm Find} \, u \in {\mathcal{D}}^{2, 2} (\mathbb{R}^N) \, \, {\rm solving} :\\ \left.\begin{array}{lll}\Delta^2 u = (1+ \varepsilon K (x)) u^{\frac{N+4}{N-4}}\\ u > 0 \end{array}\right\}{\rm in} \, \mathbb{R}^N.\end{array}\right.$$ We show an exact multiplicity result for (P ? ) for all small ? > 0.  相似文献   

3.
In this paper, firstly, we investigate a class of singular eigenvalue problems with the perturbed Hardy–Sobolev operator, and obtain some properties of the eigenvalues and the eigenfunctions. (i.e. existence, simplicity, isolation and comparison results). Secondly, applying these properties of eigenvalue problem, and the linking theorem for two symmetric cones in Banach space, we discuss the following singular elliptic problem $$\left\{\begin{array}{ll}-\Delta_{p}u-a(x)\frac{|u|^{p-2}u}{|x|^{p}}= \lambda \eta(x)|u|^{p-2}u+ f(x,u) \quad x \in \Omega, \\ u =0 \quad\quad\quad\quad\quad\quad\quad x\in\partial \Omega, \end{array} \right.$$ where ${a(x)=(\frac{n-p}{p})^{p}q(x),}$ if 1 < p < n, ${a(x)=(\frac{n-1}{n})^{n} \frac{q(x)}{({\rm log}\frac{R}{|x|})^{n}},}$ if p = n, and prove the existence of a nontrivial weak solution for any ${\lambda \in \mathbb{R}.}$   相似文献   

4.
In this paper, we are concerned with the multiplicity of nontrivial solutions for the following class of complex problems $$(-i\nabla - A(x))^2{u} = \mu|u|^{q-2}u + |u|^{2^*-2}u\, {\rm in}\, \Omega,\quad u=0\, {\rm on}\, \partial\, \Omega$$ where \({\Omega \subset \mathbb{R}^N(N \geq 4)}\) is a bounded domain with smooth boundary, \({A: \overline{\Omega} \rightarrow \mathbb{R}^N}\) is a continuous magnetic potential and \({2 \leq q < 2^* = \frac{2N}{N-2}}\) . Using the Lusternik-Schnirelman theory, we relate the number of solutions with the topology of Ω.  相似文献   

5.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

6.
The Dirichlet problem $$ \left\{ \begin{array}{l}\Delta _\infty u - |Du|^2 = 0 \quad {\rm on} \, \Omega \subset {{\mathbb R}^n} \\ u|\partial \Omega = g \\\end{array} \right. $$ might have many solutions, where ${\Delta_{\infty}u=\sum_{1\leq i,j\leq n}u_{x_i}u_{x_j}u_{x_ix_j}}$ . In this paper, we prove that the maximal solution is the unique absolute minimizer for ${H(p,z)={\frac{1}{2}}|p|^2-z}$ from calculus of variations in L and the minimal solution is the continuum value function from the “tug-of-war” game. We will also characterize graphes of solutions which are neither an absolute minimizer nor a value function. A remaining interesting question is how to interpret those intermediate solutions. Most of our approaches are based on an idea of Barles–Busca (Commun Partial Differ Equ 26(11–12):2323–2337, 2001).  相似文献   

7.
In this paper, we are concerned with the multibump solutions for the following quasilinear Schrödinger system in ${\mathbb{R}^N}$ : $$\left\{\begin{array}{ll}-\Delta{u} + \lambda{a(x)u} - \frac{1}{2}(\Delta|u|^2)u = \frac{2\alpha}{\alpha + \beta}|u|^{\alpha-2}|\upsilon|^\beta u, \\-\Delta{\upsilon} + \lambda{b(x)\upsilon} - \frac{1}{2}(\Delta|\upsilon|^2)\upsilon = \frac{2\beta}{\alpha + \beta}|u|^\alpha|\upsilon|^{\beta-2} \upsilon, \\u(x) \rightarrow 0, \upsilon(x) \rightarrow 0 \quad as|x| \rightarrow \infty,\end{array}\right.$$ where λ > 0 is a parameter, α, β > 2 satisfying αβ < 2 · 2*, here ${2^{*} = \frac{2N}{N-2}}$ is the critical Sobolev exponent for ${N \geq 3}$ and a(x), b(x) are nonnegative potentials. Using variational methods, we prove that if the zero sets of a(x) and b(x) have several common isolated connected components ${\Omega_{1}, . . . ,\Omega_{k}}$ such that the interior of ${\Omega_{i} (i = 1, 2, . . . , k)}$ is not empty and ${\partial\Omega_{i} (i = 1, 2, . . . , k)}$ is smooth, then for λ sufficiently large, the system admits, for any nonempty subset ${J \subset \{1, 2, . . . , k\}}$ , a solution which is trapped in a neighborhood of ${\cup_{j\epsilon{J}} \Omega_{j}}$ .  相似文献   

8.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

9.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

10.
We prove existence and uniqueness of viscosity solutions to the degenerate parabolic problem ${u_t = \Delta_{\infty}^{h} u}$ , where ${\Delta_{\infty}^{h}}$ is the h-homogeneous operator associated with the infinity-Laplacian, ${\Delta_{\infty}^{h} u = |Du|^{h-3} \langle D^{2}uDu, Du \rangle}$ , and h > 1. We also derive the asymptotic behaviour of u for the problem posed in the whole space, and for the Dirichlet problem posed in a bounded domain with zero boundary conditions.  相似文献   

11.
We consider the following problem $$\left\{ \begin{array}{ll}-\Delta u = \mu |u|^\frac{4}{N-2}u + \frac{|u|^\frac{4-2s}{N-2}u}{|x|^{s}} + a(x)u, & x \in \Omega,\\ u=0, & {\rm on}\; \partial \Omega \end{array}\right.$$ where ${ \mu \ge 0, 0 < s < 2, 0 \in \partial \Omega}$ and Ω is a bounded domain in R N . We prove that if ${N \ge 7, a(0) > 0}$ and all the principle curvatures of at 0 are negative, then the above problem has infinitely many solutions.  相似文献   

12.
In this paper, we study the existence of minimizers for $$F(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^{2} {\rm d}x + \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{| u(x)|^2 | u(y)|^2}{| x-y|} {\rm d}x{\rm d}y-\frac{1}{p} \int_{\mathbb{R}^3}|u|^p {\rm d}x$$ on the constraint $$S(c) = \{u \in H^1(\mathbb{R}^3) : \int_{\mathbb{R}^3}|u|^2 {\rm d}x = c\}$$ , where c >  0 is a given parameter. In the range ${p \in [3,\frac{10}{3}]}$ , we explicit a threshold value of c >  0 separating existence and nonexistence of minimizers. We also derive a nonexistence result of critical points of F(u) restricted to S(c) when c >  0 is sufficiently small. Finally, as a by-product of our approaches, we extend some results of Colin et al. (Nonlinearity 23(6):1353–1385, 2010) where a constrained minimization problem, associated with a quasi-linear equation, is considered.  相似文献   

13.
We consider the perturbed Thomas–Fermi equation $$\begin{array}{ll} x^{\prime \prime}\, =\, p(t)|x|^{\gamma-1}x\, +\, q(t)|x|^{\delta-1}x, \qquad \qquad \qquad (A) \end{array}$$ where δ and γ are positive constants with \({\delta < 1 < \gamma}\) and p(t) and q(t) are positive continuous functions on \({[a,\infty), a > 0}\) . Our aim here is to establish criteria for the existence of positive solutions of (A) decreasing to zero as \({t \to \infty}\) in the case where p(t) and q(t) are regularly varying functions (in the sense of Karamata). Generalization of the obtained results to equations of the form $$\begin{array}{ll} \left(r(t)x^{\prime}\right)^{\prime}\, =\, p(t)|x|^{\gamma-1}x \,+ \,q(t)|x|^{\delta-1}x, \qquad \qquad \qquad (B) \end{array}$$ is also given.  相似文献   

14.
We study the a priori estimates, existence/nonexistence of radial sign changing solution, and the Palais–Smale characterisation of the problem ${-\Delta_{{\mathbb B}^{N}}u - \lambda u = |u|^{p-1}u, u\in H^1({\mathbb B}^{N})}$ in the hyperbolic space ${{\mathbb B}^{N}}$ where ${1 < p\leq\frac{N+2}{N-2}}$ . We will also prove the existence of sign changing solution to the Hardy–Sobolev–Mazya equation and the critical Grushin problem.  相似文献   

15.
This paper is concerned with the existence and concentration properties of the ground state solutions to the following coupled Schrödinger systems $$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)G_{v}(z)~\hbox { in }\ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)G_{u}(z)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ and $$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)(G_{v}(z)+|z|^{2^*-2}v)~\hbox {in } \ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)(G_{u}(z)+|z|^{2^*-2}u)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ where \(z=(u,v)\in {\mathbb {R}}^2\) , \(G\) is a power type nonlinearity, having superquadratic growth at both \(0\) and infinity but subcritical, \(V\) can be sign-changing and \(\inf W>0\) . We prove the existence, exponential decay, \(H^2\) -convergence and concentration phenomena of the ground state solutions for small \(\varepsilon >0\) .  相似文献   

16.
We consider degenerate parabolic equations of the form $$\left. \begin{array}{ll}\,\,\, \partial_t u = \Delta_\lambda u + f(u) \\u|_{\partial\Omega} = 0, u|_{t=0} = u_0\end{array}\right.$$ in a bounded domain ${\Omega\subset\mathbb{R}^N}$ , where Δλ is a subelliptic operator of the type $$\quad \Delta_\lambda:= \sum_{i=1}^{N} \partial_{x_i}(\lambda_{i}^{2} \partial_{x_i}),\qquad \lambda = (\lambda_1,\ldots, \lambda_N).$$ We prove global existence of solutions and characterize their longtime behavior. In particular, we show the existence and finite fractal dimension of the global attractor of the generated semigroup and the convergence of solutions to an equilibrium solution when time tends to infinity.  相似文献   

17.
Let α and s be real numbers satisfying 0<s<α<n. We are concerned with the integral equation $$u(x)=\int_{R^n}\frac{u^p(y)}{|x-y|^{n-\alpha}|y|^s}dy, $$ where \(\frac{n-s}{n-\alpha}< p< \alpha^{*}(s)-1\) with \(\alpha^{*}(s)=\frac{2(n-s)}{n-\alpha}\) . We prove the nonexistence of positive solutions for the equation and establish the equivalence between the above integral equation and the following partial differential equation $$\begin{aligned} (-\Delta)^{\frac{\alpha}{2}}u(x)=|x|^{-s}u^p. \end{aligned}$$   相似文献   

18.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

19.
Given a smooth domain ${\Omega\subset\mathbb{R}^N}$ such that ${0 \in \partial\Omega}$ and given a nonnegative smooth function ?? on ???, we study the behavior near 0 of positive solutions of ???u?=?u q in ?? such that u =? ?? on ???\{0}. We prove that if ${\frac{N+1}{N-1} < q < \frac{N+2}{N-2}}$ , then ${u(x)\leq C |x|^{-\frac{2}{q-1}}}$ and we compute the limit of ${|x|^{\frac{2}{q-1}} u(x)}$ as x ?? 0. We also investigate the case ${q= \frac{N+1}{N-1}}$ . The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.  相似文献   

20.
The following Ginzburg–Landau energy in the absence of a magnetic field $$E_\varepsilon(\psi) = \int\limits_G\left[\frac{1}{2}|\nabla\psi|^2 + \frac{1}{4\varepsilon^2}(1-|\psi|^2)^2\right]{\rm d}x$$ was well studied during recent twenty years. Here, ${G \subset \mathbf{R}^2}$ is a bounded smooth domain, ${\psi}$ is an order parameter, ${\varepsilon >0 }$ . In particular, several global properties including the weighted energy estimation, the concentration compactness properties and the quantization effect of the energy had been established. This paper is concerned with another Ginzburg–Landau type free energy associated with p-wave superconductivity $$E_\varepsilon (\psi, u; G) = \frac{1}{2} \int\limits_G(|\nabla \psi|^2 + |\nabla u|^2 - |\nabla|\psi||^2){\rm d}x + \frac{1}{4\varepsilon^2} \int\limits_G(1-|\psi|^2)^2{\rm d}x.$$ Here, u is also an order parameter. We will prove that those global properties still hold for this more complicated energy functional. Such global properties describe the locations of the regular and the singular domains, and also show the convergence relation between the Ginzburg–Landau minimizers and the harmonic maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号