首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of water-in-crude oil emulsions is frequently attributed to a rigid asphaltene film at the water/oil interface. The rheological properties of these films and their relationship to emulsion stability are ill defined. In this study, the interfacial tension, elastic modulus, and viscous modulus were measured using a drop shape analyzer for model oils consisting of asphaltenes dissolved in toluene for concentrations varying from 0.002 to 20 kg/m(3). The effects of oscillation frequency, asphaltene concentration, and interface aging time were examined. The films exhibited viscoelastic behavior. The total modulus increased as the interface aged at all asphaltene concentrations. An attempt was made to model the rheology for the full range of asphaltene concentration. The instantaneous elasticity was modeled with a surface equation of state (SEOS), and the elastic and viscous moduli, with the Lucassen-van den Tempel (LVDT) model. It was found that only the early-time data could be modeled using the SEOS-LVDT approach; that is, the instantaneous, elastic, and viscous moduli of interfaces aged for at most 10 minutes. At longer interface aging times, the SEOS-LVDT approach was invalid, likely because of irreversible adsorption of asphaltenes on the interface and the formation of a network structure.  相似文献   

2.
The configuration of asphaltenes on the water-oil interface was evaluated from a combination of molar mass, interfacial tension, drop size distribution, and gravimetric measurements of model emulsions consisting of asphaltenes, toluene, heptane, and water. Molar mass measurements were required because asphaltenes self-associate and the level of self-association varies with asphaltene concentration, the resin content, solvent type, and temperature. Plots of interfacial tension versus the log of asphaltene molar concentration were employed to determine the average interfacial area of asphaltene molecules on the interface. The moles of asphaltenes per area of emulsion interface were determined from the molar mass data as well as drop size distributions and gravimetric measurements of the model emulsions. The results indicate that asphaltenes form monolayers on the interface even at concentrations as high as 40 kg/m(3). As well, large aggregates with molar masses exceeding approximately 10,000 g/mol did not appear to adsorb at the interface. The area occupied by the asphaltenes on the interface was constant indicating that self-associated asphaltenes simply extend further into the continuous phase than nonassociated asphaltenes. The thickness of the monolayer ranged from 2 to 9 nm.  相似文献   

3.
The effect of crude oil resins with various polar characters on the stability of w/o model emulsions containing asphaltenes is investigated using a mixture design. The resins were extracted using an adsorption-desorption technique. One asphaltene fraction and four different resin fractions from one European crude oil were used. The stabilities are measured using time-domain dielectric spectroscopy in high external electric field. It is found that resins with different polar character have different effects on the emulsion stability. At asphaltene/resin ratios of 1 and 5 : 3 the resins in some cases lead to an emulsion stability higher than that of a similar emulsion stabilized by asphaltenes only, while at low asphaltene/resin ratios ( approximately 1 : 3) the emulsion stability is reduced by the resins. The effect on emulsion stability of combining two different resin fractions depended on the resin types combined as well as the relative amount of resins and asphaltenes. Also, an increase in the stability of some of the emulsions containing resins and asphaltenes for a period of 50-300 min after the emulsification was observed. This time-dependence of emulsion stability is attributed to the mobility of resins at the oil-water interface and the slow buildup of a stabilizing interfacial film consisting of resins and asphaltenes. Copyright 2000 Academic Press.  相似文献   

4.
The role of Athabasca asphaltene particles and molecules in stabilizing emulsions was examined by measuring the surface area of water-in-toluene/hexane emulsions stabilized by various asphaltene fractions, each with a different proportion of soluble and insoluble asphaltenes. The stabilized interfacial area was found to depend only on the amount of soluble asphaltenes. Furthermore, the amount of asphaltenes on the interface was consistent with molecular monolayer coverage. Hence, at low concentrations, asphaltenes appear to both act as a molecular surfactant and stabilize emulsions. The effect of the hexane : toluene ratio on emulsion stability was examined as well. At lower hexane : toluene ratios, more asphaltenes were soluble but the surface activity of a given asphaltene molecule was reduced. The two effects oppose each other but, in general, a smaller fraction of asphaltenes appeared to stabilize emulsions at lower hexane : toluene ratios. The results imply that the emulsifying capacity of asphaltenes is reduced but not eliminated in better solvents. Copyright 2000 Academic Press.  相似文献   

5.
W/O emulsions were studied using asphaltenes as surfactants. Asphaltenes were obtained from three Venezuelan crude oils: “Lago Cinco,” “Rosa Mediano,” and “Ayacucho.” They were extracted using n-heptane as a precipitanting agent. The following variables were studied: concentration of asphaltenes in the oleic phase and pH of the aqueous phase. An increase in asphaltene concentration in the oleic phase increases emulsion stability. On the other hand, the most stable emulsions correspond to an alkaline aqueous phase. Likewise, emulsion stability was higher for asphaltenes obtained from “Lago Cinco” crude oil and lowest from Rosa Mediano asphaltenes.  相似文献   

6.
The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. Traditional problems associated with these feedstocks, particularly stable water-in-petroleum emulsions, are drawing increasing attention. Despite considerable research on the interfacial assembly of asphaltenes, resins, and naphthenic acids, much about the resulting interfacial films is not well understood. Here, we describe the use of small-angle neutron scattering (SANS) to elucidate interfacial film properties from model emulsion systems. Modeling the SANS data with both a polydisperse core/shell form factor as well as a thin sheet approximation, we have deduced the film thickness and the asphaltenic composition within the stabilizing interfacial films of water-in-model oil emulsions prepared in toluene, decalin, and 1-methylnaphthalene. Film thicknesses were found to be 100-110 A with little deviation among the three solvents. By contrast, asphaltene composition in the film varied significantly, with decalin leading to the most asphaltene-rich films (30% by volume of the film), while emulsions made in toluene and methylnaphthalene resulted in lower asphaltenic contents (12-15%). Through centrifugation and dilatational rheology, we found that trends of decreasing water resolution (i.e., increasing emulsion stability) and increasing long-time dilatational elasticity corresponded with increasing asphaltene composition in the film. In addition to the asphaltenic composition of the films, here we also deduce the film solvent and water content. Our analyses indicate that 1:1 (O/W) emulsions prepared with 3% (w/w) asphaltenes in toluene and 1 wt % NaCl aqueous solutions at pH 7 and pH 10 resulted in 80-90 A thick films, interfacial areas around 2600-3100 cm (2)/mL, and films that were roughly 25% (v/v) asphaltenic, 60-70% toluene, and 8-12% water. The increased asphaltene and water film composition at pH 10 versus pH 7, along with unique dynamic interfacial tension profiles, suggested that the protonation state of carboxylic moieties within asphaltenes impacts the final film properties. This was further supported when we characterized similar asphaltenic emulsions that also contained 9-anthracence carboxylic acid (ACA). Addition of this aromatic acid led to slightly thinner films (70-80 A) that were characteristically more aqueous (up to 20% by volume) and 5-6% (v/v) ACA. This unique in situ characterization (deduced entirely from SANS data from emulsion samples) of the entire film composition calls for further investigation regarding the role this film-based water plays in emulsion stability.  相似文献   

7.
Emulsions of water in mineral oils are stable if the oil phase contains asphaltenes which are near the condition of incipient flocculation. This condition is determined by the composition of the oil phase and by the nature of the asphaltenes. High aromaticity of the oil phase and the presence of deflocculants prevent flocculation of asphaltenes; the deflocculants may be interfacially active agents or asphaltene-like compounds with better solubility in the oil phase. Conditions of incipient flocculation of asphaltenes correlate very well with a considerable increase of rheological resistance of the interface between the oil phase and distilled water, determined according to the torsion oscillation method. Stabilization of the water-in-oil emulsions is therefore caused by the build-up of a coherent layer of asphaltenes in the water-oil interface in these cases. Deflocculants of asphaltenes in the oil phase destroy their stabilizing effect; however, the deflocculants themselves may stabilize the water-in-oil emulsions by adsorption on the water-oil interface and then the correlation between the condition of asphaltenes and emulsion stability does not hold, nor is the interfacial viscosity perceptibly increased. Under borderline conditions of emulsion stability a few percent of sodium chloride in the water phase counteracts the build-up of a stabilizing layer of asphaltenes in the water-oil interface and so do higher pH values of a buffered water phase. At low pH-values emulsion stability does not correlate with interfacial resistance. It can be concluded that asphaltenes stabilize water-in-oil emulsions if they accumulate on the water-oil interface. This interfacial layer may show a coherence, which is an indication of the presence of asphaltenes rather than a condition for stability of the emulsions.  相似文献   

8.
Asphaltenes from four crude oils were fractionated by precipitation in mixtures of heptane and toluene. Solubility profiles generated in the presence of resins (1:1 mass ratio) indicated the onset of asphaltene precipitation occurred at lower toluene volume fractions (0.1–0.2) than without resins. Small-angle neutron scattering (SANS) was performed on solutions of asphaltene fractions in mixtures of heptane and toluene with added resins to determine aggregate sizes. Water-in-oil emulsions of asphaltene–resin solutions were prepared and separated by a centrifuge method to determine the vol.% water resolved. In general, the addition of resins to asphaltenes reduced the aggregate size by disrupting the π–π and polar bonding interactions between asphaltene monomers. Interaction of resins with asphaltenic aggregates rendered the aggregates less interfacially active and thus reduced emulsion stability. The smallest aggregate sizes observed and the weakest emulsion stability at high resin to asphaltene (R/A) ratios presumably corresponded to asphaltenic monomers or small oligomers strongly interacting with resin molecules. It was often observed that, in the absence of resins, the more polar or higher molecular weight asphaltenes were insoluble in solutions of heptane and toluene. The addition of resins dissolved these insolubles and aggregate size by SANS increased until the solubility limit was reached. This corresponded approximately to the point of maximum emulsion stability. Asphaltene chemistry plays a vital role in dictating emulsion stability. The most polar species typically required significantly higher resin concentrations to disrupt asphaltene interactions and completely destabilize emulsions. Aggregation and film formation are likely driven by polar heteroatom interactions, such as hydrogen bonding, which allow asphaltenes to absorb, consolidate, and form cohesive films at the oil–water interface.  相似文献   

9.
Natural biopolymer stabilized oil-in-water emulsions were formulated using β-lactoglobulin (β-lg), gum arabic (GA), and β-lg:GA solutions as an alternative to synthetic surfactants. Emulsions using these biopolymers and their complexes were formulated varying the biopolymer total concentration, the protein-to-polysaccharide ratio, and the emulsification protocol. This work showed that whereas β-lg enabled the formulation of emulsions at concentration as low as 0.5 (w/w)%, GA allowed to obtain emulsions at concentrations equal to or higher than 2.5 (w/w)%. In order to improve emulsion stability, β-lg and GA were complexed through strong attractive electrostatic interactions. GA solution had to be added to previously prepared β-lg emulsions in order to obtain stable emulsions. Interfacial tension and interfacial rheological measurements allowed a better understanding of the possible stabilizing mechanism. β-lg and GA both induced a very effective decrease in interfacial tension and showed interfacial elastic behaviour. In the mixed system, β-lg adsorbed at the interface and GA electrostatically bound to it, leading to the formation of a bi-layer stabilized emulsion. However, emulsion stability was not improved compared to β-lg stabilized emulsion, probably due to depletion or bridging flocculation.  相似文献   

10.
Stability and demulsification of emulsions stabilized by asphaltenes or resins   总被引:11,自引:0,他引:11  
Experimental data are presented to show the influence of asphaltenes and resins on the stability and demulsification of emulsions. It was found that emulsion stability was related to the concentrations of the asphaltene and resin in the crude oil, and the state of dispersion of the asphaltenes and resins (molecular vs colloidal) was critical to the strength or rigidity of interfacial films and hence to the stability of the emulsions. Based on this research, a possible emulsion minimization approach in refineries, which can be implemented utilizing microwave radiation, is also suggested. Comparing with conventional heating, microwave radiation can enhance the demulsification rate by an order of magnitude. The demulsification efficiency reaches 100% in a very short time under microwave radiation.  相似文献   

11.
Using positively charged plate-like layered double hydroxides (LDHs) particles as emulsifier, liquid paraffin-in-water emulsions stabilized solely by such particles are successfully prepared. The effects of the pH of LDHs aqueous dispersions on the formation and stability of the emulsions are investigated here. The properties of the LDHs dispersions at different pHs are described, including particle zeta potential, particle aggregation, particle contact angle, flow behavior of the dispersions and particle adsorption at a planar oil/water interface. The zeta potential decreases with increasing pH, leading to the aggregation of LDHs particles into large flocs. The structural strength of LDHs dispersions is enhanced by increasing pH and particle concentration. The three-phase contact angle of LDHs also increases with increasing pH, but the variation is very small. Visual observation and SEM images of the interfacial particle layers show that the adsorption behavior of LDHs particles at the planar oil/water interface is controlled by dispersion pH. We consider that the particle-particle (at the interface) and particle-interface electrostatic interactions are well controlled by adjusting the dispersion pH, leading to pH-tailored colloid adsorption. The formation of an adsorbed particle layer around the oil drops is crucial for the formation and stability of the emulsions. Emulsion stability improves with increasing pH and particle concentration because more particles are available to be adsorbed at the oil/water interface. The structural strength of LDHs dispersions and the gel-like structure of emulsions also influence the stability of the emulsions, but they are not necessary for the formation of emulsions. The emulsions cannot be demulsified by adjusting emulsion pH due to the irreversible adsorption of LDHs particles at the oil/water interface. TEM images of the emulsion drops show that a thick particle layer forms around the oil drops, confirming that Pickering emulsions are stabilized by the adsorbed particle layers. The thick adsorbed particle layer may be composed of a stable inner particle layer which is in direct contact with the oil phase and a relatively unstable outer particle layer surrounding the inner layer.  相似文献   

12.
段明  陶俊  方申文  施鹏  李珂怡  王承杰  张衡 《化学通报》2015,78(12):1128-1132
研究了环烷酸对油水界面膜界面张力、弹性模量、损耗模量以及界面膜破裂速率常数的影响,同时对环烷酸与沥青质之间的相互作用进行了测定。结果表明,环烷酸使得原油油水界面张力下降;弹性模量随着环烷酸加量以及振荡频率的增加都分别逐渐增大,并且最终都趋于平衡;在任何振荡频率值时,损耗模量都随着环烷酸加量先增大后减小;当环烷酸加量增加时,界面膜破裂速率常数降低。环烷酸与沥青质之间存在相互作用,随着环烷酸加量的增加,其对沥青质界面膜弹性模量的影响与对原油界面膜弹性模量的影响相似,表明环烷酸主要是通过与沥青质相互作用而促进乳状液稳定性的。  相似文献   

13.
This study evaluated how variations in polyglycerol polyricinoleate (PGPR) concentration and ethanol dispersed phase content affect the stability of ethanol-in-oil (E/O) emulsions. Results indicate that the stable 10?wt% E/O emulsions can be produced using 2?wt% PGPR. Increasing the ethanol dispersed phased content at constant PGPR concentration caused instability in emulsion. These emulsions remained stable to droplet flocculation and coalescence in the presence of Centella asiatica ethanol extract. PGPR does not greatly decrease the interfacial tension of the ethanol–oil interface. However, it adsorbed at the interface and stabilized the ethanol droplets in the emulsion via steric mechanism.  相似文献   

14.
This article describes interfacial properties of acidic asphaltenes and their ability to stabilize emulsions. Asphaltenes extracted from crude oil were esterified with methanol to prevent ionization of carboxylic acid at high pH. Interfacial tension (IFT) between water and asphaltenes in xylene was significantly lower in basic than in acidic and neutral media, while the elasticity of the corresponding films was higher. These results are consistent with much more stable asphaltene-based emulsions in basic medium. For ester-asphaltenes, the IFT only showed a slight decrease under basic conditions and the interfacial elasticity was close to that in acidic solutions and only slightly higher than for neutral medium. While the asphaltene-stabilized emulsions showed a strong increase in stability in basic medium, this increase was much less for ester-asphaltene emulsions. Salt influenced the interfacial properties and generally reduced emulsion stability.  相似文献   

15.
The role of asphaltenes in stabilizing water-in-crude oil emulsions is extremely well established. The mechanism appears to be one in which planar, disk-like asphaltene molecules aggregate through lateral intermolecular forces to form primary aggregates or micelles which are interfacially active. These aggregates — upon adsorbing at the oil-water interface — crosslink through physical interactions to form a viscoelastic network, which has been characterized by some as a “skin” or a “plastic film”. The strength of this film, as gauged by shear and elastic moduli, seems to correlate well with water-in-oil emulsion stability. What is still relatively unknown is the role of chemistry in governing the strength of these lateral inter-asphaltene interactions. The candidate interactions include π-bonding between the delocalized electrons in the fused aromatic ring core, H-bonding between proton donors and acceptors imbedded in the asphaltenic cores, and metal-electron interactions between, for example, heavy metal ions such as vanadium or nickel and electron pairs in pyrrolic or porphyrin functional groups. We have probed these interactions indirectly by studying the destabilization of water-in-oil emulsions by a variety of aromatic solvents. In this paper, we review our previous results on both water-in-crude oil systems, as well as water-in-model oil (heptane-toluene-asphaltene mixtures) systems, in which the emulsions were progressively destabilized by addition of aromatic solvents. We also present new results with fused ring aromatic solvents, specifically methyl-naphthalene, phenanthrene, and phenanthridine. Our results suggest that fused ring aromatic solvents are considerably more effective at destabilizing asphaltene emulsions and proton-accepting fused ring aromatic solvents are most effective. These results indicate that both π-bonding and H-bonding play significant roles in mediating the aggregation of asphaltenes in oil-water interfacial films.  相似文献   

16.
Lupin seed protein isolates adsorbed at the corn oil–water interface formed, after long ageing times, interfacial films with viscoelastic properties. The viscoelastic parameters of the films, derived by analysis of creep compliance–time curves, were markedly influenced by the aqueous phase protein concentrations, pH, ageing time and isolate preparation methods. Instantaneous elastic modulus, E0(s), showed maxima at a certain concentration which probably corresponded to monolayer saturation coverage and at pH 5.5, i.e. near to its isoelectric point, where the protein molecules are in a more compact form than at other pH values. The full fat lupin seed protein fractions gave the highest viscoelasticity values under all conditions and this in turn have an effect on the corresponding emulsion/foam stability.  相似文献   

17.
Adsorbed films of milk proteins at the oil-water (O-W) interface have been imaged using a Brewster angle microscope (BAM). Special adaptations were made to the BAM to allow imaging of the O-W interface and to enable in situ heating and cooling of the adsorbed films. The proteins beta-lactoglobulin (beta-L) and alphas1-, beta-, and kappa-casein were studied over a range of bulk protein concentrations (Cb) and surface ages at pH 7 and for beta-L at pH 5 also. The adsorbed films were subjected to incremental compression and expansion cycles, such that the film area was typically varied between 125% and 50% of the original film area, and the resulting film structure was recorded via the BAM at 25.0 degrees C. Structuring of beta-L films (the formation of ridges and cracks) was more pronounced at pH 5 (closer to the protein's isoelectric point) than at pH 7 and for longer adsorption times and/or higher Cb. Structuring was also much more apparent at the O-W interface than at the A-W interface on compression/expansion/aging, especially at pH 7. After heating beta-L films adsorbed at low Cb (0.005 wt %) to 80 or 90 degrees C, an even greater degree of film structuring was evident, but beta-L films adsorbed at higher Cb (> or =0.05 wt %) showed fewer but larger fractures. The adsorbed caseins showed little evidence of such features, either before or after heating, apart from slight structuring for the heated films of alphas1- and kappa-casein films after 1 day. Changes in the dilatational elastic modulus of the beta-L films (Cb = 0.005 wt %) were correlated with the variations in the structural integrity of the films as observed via the BAM technique. In particular, there was a marked increase in the elastic modulus on heating, while the cycle of compression and expansion appeared to result in a net film weakening overall. The beta-L films adsorbed at higher Cb (> or =0.05 wt %) behaved as if an even stronger elastic skin completely covered the interface. The overall conclusion is that interfacial protein films subjected to these types of thermal and mechanical perturbations, which are typical of those that occur in food colloid processing, can become highly inhomogeneous, depending on the type of protein and the bulk solution conditions. This undoubtedly has implications for the stability of the corresponding emulsions and foams.  相似文献   

18.
We have developed a specific protocol to study with SANS measurements, the structure of the interfacial film layer in water-in-oil emulsions stabilized by asphaltene. Using the contrast matching technique available for neutron scattering, we have access to both the composition and the quantity of interface. The results obtained give us a view of the asphaltene aggregates in the interfacial film, which are structured as a monolayer and show a direct correlation between the size of asphaltene aggregates in solution and the thickness of the film layer. The organization of the interface has been studied as a function of several parameters such as the quantity of resins, i.e., the size of aggregates, the pH of the aqueous phase, and the aging time of the emulsions and the consequences of these variations on the macroscopic stability of these emulsions. We show that the key parameter for the stability is the inter-asphaltene aggregate interaction inside the film layer. Changing the attractive/repulsive balance between the aggregates in the film at the microscopic scale, by changing the aggregate's size or the aggregate's ionization, has a direct incidence on the quantity of water recovered after centrifugation: the stronger the attraction between aggregates in the film, the more stable the emulsion is.  相似文献   

19.
The effect of the electrolyte concentration on the interfacial interactions, rheological properties and emulsion shear stability was investigated. The increase of the electrolyte concentration leads to the growth of storage modulus and the yield stress of emulsions and enhances the emulsion stability to shearing, while interfacial tension decreases. The observed effects were attributed to the interfacial interaction of a surfactant and an electrolyte that was confirmed by the IR-analysis. The interaction between an electrolyte and a surfactant provides a stable interface.  相似文献   

20.
The formation of stable water-in-crude oil emulsions during petroleum production and refinery may create sever and costly separation problems. It is very important to understand the mechanism and factors contributing to the formation and stabilization of such emulsions for both great economic and environmental development. This article investigates some of the factors controlling the stability of water-in-crude oil emulsions formed in Burgan oil field in Kuwait. Water-in-crude oil emulsion samples collected from Burgan oil filed have been used to separate asphaltenes, resins, waxes, and crude oil fractions. These fractions were used to prepare emulsion samples to study the effect of solid particles (Fe3O4) on the stability of emulsions samples. Results indicate that high solid content lead to higher degree of emulsion stability. Stability of emulsion samples under various waxes to asphaltenes (W/A) ratios have also been tested. These tests showed that at low W/A content, the emulsions were very stable. While at a wax to asphaltene ratio above 1 to 1, the addition of wax reduced emulsion stability. Stability of emulsion samples with varying amount of water cut has also been investigated. Results indicated that stability and hence viscosity of emulsion increases as a function of increasing the water cut until it reaches the inversion point where a sharp decline in viscosity takes place. This inversion point was found to be approximately at 50% water cut for the crude oils considered in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号